| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_#include <cassert>#include <cstddef>#include <memory>#include <new>#include <tuple>#include <type_traits>#include <utility>#include "absl/base/config.h"#include "absl/memory/memory.h"#include "absl/meta/type_traits.h"#include "absl/utility/utility.h"#ifdef ABSL_HAVE_ADDRESS_SANITIZER#include <sanitizer/asan_interface.h>#endif#ifdef ABSL_HAVE_MEMORY_SANITIZER#include <sanitizer/msan_interface.h>#endifnamespace absl {ABSL_NAMESPACE_BEGINnamespace container_internal {template <size_t Alignment>struct alignas(Alignment) AlignedType {};// Allocates at least n bytes aligned to the specified alignment.// Alignment must be a power of 2. It must be positive.//// Note that many allocators don't honor alignment requirements above certain// threshold (usually either alignof(std::max_align_t) or alignof(void*)).// Allocate() doesn't apply alignment corrections. If the underlying allocator// returns insufficiently alignment pointer, that's what you are going to get.template <size_t Alignment, class Alloc>void* Allocate(Alloc* alloc, size_t n) {  static_assert(Alignment > 0, "");  assert(n && "n must be positive");  using M = AlignedType<Alignment>;  using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;  using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;  // On macOS, "mem_alloc" is a #define with one argument defined in  // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it  // with the "foo(bar)" syntax.  A my_mem_alloc(*alloc);  void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M));  assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&         "allocator does not respect alignment");  return p;}// The pointer must have been previously obtained by calling// Allocate<Alignment>(alloc, n).template <size_t Alignment, class Alloc>void Deallocate(Alloc* alloc, void* p, size_t n) {  static_assert(Alignment > 0, "");  assert(n && "n must be positive");  using M = AlignedType<Alignment>;  using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;  using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;  // On macOS, "mem_alloc" is a #define with one argument defined in  // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it  // with the "foo(bar)" syntax.  A my_mem_alloc(*alloc);  AT::deallocate(my_mem_alloc, static_cast<M*>(p),                 (n + sizeof(M) - 1) / sizeof(M));}namespace memory_internal {// Constructs T into uninitialized storage pointed by `ptr` using the args// specified in the tuple.template <class Alloc, class T, class Tuple, size_t... I>void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,                            absl::index_sequence<I...>) {  absl::allocator_traits<Alloc>::construct(      *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);}template <class T, class F>struct WithConstructedImplF {  template <class... Args>  decltype(std::declval<F>()(std::declval<T>())) operator()(      Args&&... args) const {    return std::forward<F>(f)(T(std::forward<Args>(args)...));  }  F&& f;};template <class T, class Tuple, size_t... Is, class F>decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(    Tuple&& t, absl::index_sequence<Is...>, F&& f) {  return WithConstructedImplF<T, F>{std::forward<F>(f)}(      std::get<Is>(std::forward<Tuple>(t))...);}template <class T, size_t... Is>auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)    -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {  return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);}// Returns a tuple of references to the elements of the input tuple. T must be a// tuple.template <class T>auto TupleRef(T&& t) -> decltype(    TupleRefImpl(std::forward<T>(t),                 absl::make_index_sequence<                     std::tuple_size<typename std::decay<T>::type>::value>())) {  return TupleRefImpl(      std::forward<T>(t),      absl::make_index_sequence<          std::tuple_size<typename std::decay<T>::type>::value>());}template <class F, class K, class V>decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,                           std::declval<std::tuple<K>>(), std::declval<V>()))DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {  const auto& key = std::get<0>(p.first);  return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),                            std::move(p.second));}}  // namespace memory_internal// Constructs T into uninitialized storage pointed by `ptr` using the args// specified in the tuple.template <class Alloc, class T, class Tuple>void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {  memory_internal::ConstructFromTupleImpl(      alloc, ptr, std::forward<Tuple>(t),      absl::make_index_sequence<          std::tuple_size<typename std::decay<Tuple>::type>::value>());}// Constructs T using the args specified in the tuple and calls F with the// constructed value.template <class T, class Tuple, class F>decltype(std::declval<F>()(std::declval<T>())) WithConstructed(    Tuple&& t, F&& f) {  return memory_internal::WithConstructedImpl<T>(      std::forward<Tuple>(t),      absl::make_index_sequence<          std::tuple_size<typename std::decay<Tuple>::type>::value>(),      std::forward<F>(f));}// Given arguments of an std::pair's consructor, PairArgs() returns a pair of// tuples with references to the passed arguments. The tuples contain// constructor arguments for the first and the second elements of the pair.//// The following two snippets are equivalent.//// 1. std::pair<F, S> p(args...);//// 2. auto a = PairArgs(args...);//    std::pair<F, S> p(std::piecewise_construct,//                      std::move(p.first), std::move(p.second));inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }template <class F, class S>std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {  return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),          std::forward_as_tuple(std::forward<S>(s))};}template <class F, class S>std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(    const std::pair<F, S>& p) {  return PairArgs(p.first, p.second);}template <class F, class S>std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {  return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));}template <class F, class S>auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)    -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),                               memory_internal::TupleRef(std::forward<S>(s)))) {  return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),                        memory_internal::TupleRef(std::forward<S>(s)));}// A helper function for implementing apply() in map policies.template <class F, class... Args>auto DecomposePair(F&& f, Args&&... args)    -> decltype(memory_internal::DecomposePairImpl(        std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {  return memory_internal::DecomposePairImpl(      std::forward<F>(f), PairArgs(std::forward<Args>(args)...));}// A helper function for implementing apply() in set policies.template <class F, class Arg>decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))DecomposeValue(F&& f, Arg&& arg) {  const auto& key = arg;  return std::forward<F>(f)(key, std::forward<Arg>(arg));}// Helper functions for asan and msan.inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {#ifdef ABSL_HAVE_ADDRESS_SANITIZER  ASAN_POISON_MEMORY_REGION(m, s);#endif#ifdef ABSL_HAVE_MEMORY_SANITIZER  __msan_poison(m, s);#endif  (void)m;  (void)s;}inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {#ifdef ABSL_HAVE_ADDRESS_SANITIZER  ASAN_UNPOISON_MEMORY_REGION(m, s);#endif#ifdef ABSL_HAVE_MEMORY_SANITIZER  __msan_unpoison(m, s);#endif  (void)m;  (void)s;}template <typename T>inline void SanitizerPoisonObject(const T* object) {  SanitizerPoisonMemoryRegion(object, sizeof(T));}template <typename T>inline void SanitizerUnpoisonObject(const T* object) {  SanitizerUnpoisonMemoryRegion(object, sizeof(T));}namespace memory_internal {// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and// offsetof(Pair, second) respectively. Otherwise they are -1.//// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout// type, which is non-portable.template <class Pair, class = std::true_type>struct OffsetOf {  static constexpr size_t kFirst = static_cast<size_t>(-1);  static constexpr size_t kSecond = static_cast<size_t>(-1);};template <class Pair>struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {  static constexpr size_t kFirst = offsetof(Pair, first);  static constexpr size_t kSecond = offsetof(Pair, second);};template <class K, class V>struct IsLayoutCompatible { private:  struct Pair {    K first;    V second;  };  // Is P layout-compatible with Pair?  template <class P>  static constexpr bool LayoutCompatible() {    return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&           alignof(P) == alignof(Pair) &&           memory_internal::OffsetOf<P>::kFirst ==               memory_internal::OffsetOf<Pair>::kFirst &&           memory_internal::OffsetOf<P>::kSecond ==               memory_internal::OffsetOf<Pair>::kSecond;  } public:  // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,  // then it is safe to store them in a union and read from either.  static constexpr bool value = std::is_standard_layout<K>() &&                                std::is_standard_layout<Pair>() &&                                memory_internal::OffsetOf<Pair>::kFirst == 0 &&                                LayoutCompatible<std::pair<K, V>>() &&                                LayoutCompatible<std::pair<const K, V>>();};}  // namespace memory_internal// The internal storage type for key-value containers like flat_hash_map.//// It is convenient for the value_type of a flat_hash_map<K, V> to be// pair<const K, V>; the "const K" prevents accidental modification of the key// when dealing with the reference returned from find() and similar methods.// However, this creates other problems; we want to be able to emplace(K, V)// efficiently with move operations, and similarly be able to move a// pair<K, V> in insert().//// The solution is this union, which aliases the const and non-const versions// of the pair. This also allows flat_hash_map<const K, V> to work, even though// that has the same efficiency issues with move in emplace() and insert() -// but people do it anyway.//// If kMutableKeys is false, only the value member can be accessed.//// If kMutableKeys is true, key can be accessed through all slots while value// and mutable_value must be accessed only via INITIALIZED slots. Slots are// created and destroyed via mutable_value so that the key can be moved later.//// Accessing one of the union fields while the other is active is safe as// long as they are layout-compatible, which is guaranteed by the definition of// kMutableKeys. For C++11, the relevant section of the standard is// https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)template <class K, class V>union map_slot_type {  map_slot_type() {}  ~map_slot_type() = delete;  using value_type = std::pair<const K, V>;  using mutable_value_type =      std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;  value_type value;  mutable_value_type mutable_value;  absl::remove_const_t<K> key;};template <class K, class V>struct map_slot_policy {  using slot_type = map_slot_type<K, V>;  using value_type = std::pair<const K, V>;  using mutable_value_type = std::pair<K, V>; private:  static void emplace(slot_type* slot) {    // The construction of union doesn't do anything at runtime but it allows us    // to access its members without violating aliasing rules.    new (slot) slot_type;  }  // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one  // or the other via slot_type. We are also free to access the key via  // slot_type::key in this case.  using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>; public:  static value_type& element(slot_type* slot) { return slot->value; }  static const value_type& element(const slot_type* slot) {    return slot->value;  }  // When C++17 is available, we can use std::launder to provide mutable  // access to the key for use in node handle.#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606  static K& mutable_key(slot_type* slot) {    // Still check for kMutableKeys so that we can avoid calling std::launder    // unless necessary because it can interfere with optimizations.    return kMutableKeys::value ? slot->key                               : *std::launder(const_cast<K*>(                                     std::addressof(slot->value.first)));  }#else  // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606)  static const K& mutable_key(slot_type* slot) { return key(slot); }#endif  static const K& key(const slot_type* slot) {    return kMutableKeys::value ? slot->key : slot->value.first;  }  template <class Allocator, class... Args>  static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {    emplace(slot);    if (kMutableKeys::value) {      absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,                                                   std::forward<Args>(args)...);    } else {      absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,                                                   std::forward<Args>(args)...);    }  }  // Construct this slot by moving from another slot.  template <class Allocator>  static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {    emplace(slot);    if (kMutableKeys::value) {      absl::allocator_traits<Allocator>::construct(          *alloc, &slot->mutable_value, std::move(other->mutable_value));    } else {      absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,                                                   std::move(other->value));    }  }  template <class Allocator>  static void destroy(Allocator* alloc, slot_type* slot) {    if (kMutableKeys::value) {      absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);    } else {      absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);    }  }  template <class Allocator>  static void transfer(Allocator* alloc, slot_type* new_slot,                       slot_type* old_slot) {    emplace(new_slot);    if (kMutableKeys::value) {      absl::allocator_traits<Allocator>::construct(          *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));    } else {      absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,                                                   std::move(old_slot->value));    }    destroy(alloc, old_slot);  }  template <class Allocator>  static void swap(Allocator* alloc, slot_type* a, slot_type* b) {    if (kMutableKeys::value) {      using std::swap;      swap(a->mutable_value, b->mutable_value);    } else {      value_type tmp = std::move(a->value);      absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);      absl::allocator_traits<Allocator>::construct(*alloc, &a->value,                                                   std::move(b->value));      absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);      absl::allocator_traits<Allocator>::construct(*alloc, &b->value,                                                   std::move(tmp));    }  }  template <class Allocator>  static void move(Allocator* alloc, slot_type* src, slot_type* dest) {    if (kMutableKeys::value) {      dest->mutable_value = std::move(src->mutable_value);    } else {      absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);      absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,                                                   std::move(src->value));    }  }};}  // namespace container_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
 |