| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// The implementation of the absl::Duration class, which is declared in// //absl/time.h.  This class behaves like a numeric type; it has no public// methods and is used only through the operators defined here.//// Implementation notes://// An absl::Duration is represented as////   rep_hi_ : (int64_t)  Whole seconds//   rep_lo_ : (uint32_t) Fractions of a second//// The seconds value (rep_hi_) may be positive or negative as appropriate.// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.// The API for Duration guarantees at least nanosecond resolution, which// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.// However, to utilize more of the available 32 bits of space in rep_lo_,// we instead store quarters of a nanosecond in rep_lo_ resulting in a max// value of 4B - 1.  This allows us to correctly handle calculations like// 0.5 nanos + 0.5 nanos = 1 nano.  The following example shows the actual// Duration rep using quarters of a nanosecond.////    2.5 sec = {rep_hi_=2,  rep_lo_=2000000000}  // lo = 4 * 500000000//   -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}//// Infinite durations are represented as Durations with the rep_lo_ field set// to all 1s.////   +InfiniteDuration://     rep_hi_ : kint64max//     rep_lo_ : ~0U////   -InfiniteDuration://     rep_hi_ : kint64min//     rep_lo_ : ~0U//// Arithmetic overflows/underflows to +/- infinity and saturates.#include <algorithm>#include <cassert>#include <cctype>#include <cerrno>#include <cmath>#include <cstdint>#include <cstdlib>#include <cstring>#include <ctime>#include <functional>#include <limits>#include <string>#include "absl/base/casts.h"#include "absl/numeric/int128.h"#include "absl/time/time.h"namespace absl {namespace {using time_internal::kTicksPerNanosecond;using time_internal::kTicksPerSecond;constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();// Can't use std::isinfinite() because it doesn't exist on windows.inline bool IsFinite(double d) {  if (std::isnan(d)) return false;  return d != std::numeric_limits<double>::infinity() &&         d != -std::numeric_limits<double>::infinity();}inline bool IsValidDivisor(double d) {  if (std::isnan(d)) return false;  return d != 0.0;}// Can't use std::round() because it is only available in C++11.// Note that we ignore the possibility of floating-point over/underflow.template <typename Double>inline double Round(Double d) {  return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);}// *sec may be positive or negative.  *ticks must be in the range// -kTicksPerSecond < *ticks < kTicksPerSecond.  If *ticks is negative it// will be normalized to a positive value by adjusting *sec accordingly.inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {  if (*ticks < 0) {    --*sec;    *ticks += kTicksPerSecond;  }}// Makes a uint128 from the absolute value of the given scalar.inline uint128 MakeU128(int64_t a) {  uint128 u128 = 0;  if (a < 0) {    ++u128;    ++a;  // Makes it safe to negate 'a'    a = -a;  }  u128 += static_cast<uint64_t>(a);  return u128;}// Makes a uint128 count of ticks out of the absolute value of the Duration.inline uint128 MakeU128Ticks(Duration d) {  int64_t rep_hi = time_internal::GetRepHi(d);  uint32_t rep_lo = time_internal::GetRepLo(d);  if (rep_hi < 0) {    ++rep_hi;    rep_hi = -rep_hi;    rep_lo = kTicksPerSecond - rep_lo;  }  uint128 u128 = static_cast<uint64_t>(rep_hi);  u128 *= static_cast<uint64_t>(kTicksPerSecond);  u128 += rep_lo;  return u128;}// Breaks a uint128 of ticks into a Duration.inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {  int64_t rep_hi;  uint32_t rep_lo;  const uint64_t h64 = Uint128High64(u128);  const uint64_t l64 = Uint128Low64(u128);  if (h64 == 0) {  // fastpath    const uint64_t hi = l64 / kTicksPerSecond;    rep_hi = static_cast<int64_t>(hi);    rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);  } else {    // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).    // Any positive tick count whose high 64 bits are >= kMaxRepHi64    // is not representable as a Duration.  A negative tick count can    // have its high 64 bits == kMaxRepHi64 but only when the low 64    // bits are all zero, otherwise it is not representable either.    const uint64_t kMaxRepHi64 = 0x77359400UL;    if (h64 >= kMaxRepHi64) {      if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {        // Avoid trying to represent -kint64min below.        return time_internal::MakeDuration(kint64min);      }      return is_neg ? -InfiniteDuration() : InfiniteDuration();    }    const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);    const uint128 hi = u128 / kTicksPerSecond128;    rep_hi = static_cast<int64_t>(Uint128Low64(hi));    rep_lo =        static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));  }  if (is_neg) {    rep_hi = -rep_hi;    if (rep_lo != 0) {      --rep_hi;      rep_lo = kTicksPerSecond - rep_lo;    }  }  return time_internal::MakeDuration(rep_hi, rep_lo);}// Convert between int64_t and uint64_t, preserving representation. This// allows us to do arithmetic in the unsigned domain, where overflow has// well-defined behavior. See operator+=() and operator-=().//// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef// name intN_t designates a signed integer type with width N, no padding// bits, and a two's complement representation." So, we can convert to// and from the corresponding uint64_t value using a bit cast.inline uint64_t EncodeTwosComp(int64_t v) {  return absl::bit_cast<uint64_t>(v);}inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }// Note: The overflow detection in this function is done using greater/less *or// equal* because kint64max/min is too large to be represented exactly in a// double (which only has 53 bits of precision). In order to avoid assigning to// rep->hi a double value that is too large for an int64_t (and therefore is// undefined), we must consider computations that equal kint64max/min as a// double as overflow cases.inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {  double c = a_hi + b_hi;  if (c >= kint64max) {    *d = InfiniteDuration();    return false;  }  if (c <= kint64min) {    *d = -InfiniteDuration();    return false;  }  *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));  return true;}// A functor that's similar to std::multiplies<T>, except this returns the max// T value instead of overflowing. This is only defined for uint128.template <typename Ignored>struct SafeMultiply {  uint128 operator()(uint128 a, uint128 b) const {    // b hi is always zero because it originated as an int64_t.    assert(Uint128High64(b) == 0);    // Fastpath to avoid the expensive overflow check with division.    if (Uint128High64(a) == 0) {      return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)                 ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))                 : a * b;    }    return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;  }};// Scales (i.e., multiplies or divides, depending on the Operation template)// the Duration d by the int64_t r.template <template <typename> class Operation>inline Duration ScaleFixed(Duration d, int64_t r) {  const uint128 a = MakeU128Ticks(d);  const uint128 b = MakeU128(r);  const uint128 q = Operation<uint128>()(a, b);  const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);  return MakeDurationFromU128(q, is_neg);}// Scales (i.e., multiplies or divides, depending on the Operation template)// the Duration d by the double r.template <template <typename> class Operation>inline Duration ScaleDouble(Duration d, double r) {  Operation<double> op;  double hi_doub = op(time_internal::GetRepHi(d), r);  double lo_doub = op(time_internal::GetRepLo(d), r);  double hi_int = 0;  double hi_frac = std::modf(hi_doub, &hi_int);  // Moves hi's fractional bits to lo.  lo_doub /= kTicksPerSecond;  lo_doub += hi_frac;  double lo_int = 0;  double lo_frac = std::modf(lo_doub, &lo_int);  // Rolls lo into hi if necessary.  int64_t lo64 = Round(lo_frac * kTicksPerSecond);  Duration ans;  if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;  int64_t hi64 = time_internal::GetRepHi(ans);  if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;  hi64 = time_internal::GetRepHi(ans);  lo64 %= kTicksPerSecond;  NormalizeTicks(&hi64, &lo64);  return time_internal::MakeDuration(hi64, lo64);}// Tries to divide num by den as fast as possible by looking for common, easy// cases. If the division was done, the quotient is in *q and the remainder is// in *rem and true will be returned.inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,                         Duration* rem) {  // Bail if num or den is an infinity.  if (time_internal::IsInfiniteDuration(num) ||      time_internal::IsInfiniteDuration(den))    return false;  int64_t num_hi = time_internal::GetRepHi(num);  uint32_t num_lo = time_internal::GetRepLo(num);  int64_t den_hi = time_internal::GetRepHi(den);  uint32_t den_lo = time_internal::GetRepLo(den);  if (den_hi == 0 && den_lo == kTicksPerNanosecond) {    // Dividing by 1ns    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {      *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;      *rem = time_internal::MakeDuration(0, num_lo % den_lo);      return true;    }  } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {    // Dividing by 100ns (common when converting to Universal time)    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {      *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);      *rem = time_internal::MakeDuration(0, num_lo % den_lo);      return true;    }  } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {    // Dividing by 1us    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {      *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);      *rem = time_internal::MakeDuration(0, num_lo % den_lo);      return true;    }  } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {    // Dividing by 1ms    if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {      *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);      *rem = time_internal::MakeDuration(0, num_lo % den_lo);      return true;    }  } else if (den_hi > 0 && den_lo == 0) {    // Dividing by positive multiple of 1s    if (num_hi >= 0) {      if (den_hi == 1) {        *q = num_hi;        *rem = time_internal::MakeDuration(0, num_lo);        return true;      }      *q = num_hi / den_hi;      *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);      return true;    }    if (num_lo != 0) {      num_hi += 1;    }    int64_t quotient = num_hi / den_hi;    int64_t rem_sec = num_hi % den_hi;    if (rem_sec > 0) {      rem_sec -= den_hi;      quotient += 1;    }    if (num_lo != 0) {      rem_sec -= 1;    }    *q = quotient;    *rem = time_internal::MakeDuration(rem_sec, num_lo);    return true;  }  return false;}}  // namespacenamespace time_internal {// The 'satq' argument indicates whether the quotient should saturate at the// bounds of int64_t.  If it does saturate, the difference will spill over to// the remainder.  If it does not saturate, the remainder remain accurate,// but the returned quotient will over/underflow int64_t and should not be used.int64_t IDivDuration(bool satq, const Duration num, const Duration den,                   Duration* rem) {  int64_t q = 0;  if (IDivFastPath(num, den, &q, rem)) {    return q;  }  const bool num_neg = num < ZeroDuration();  const bool den_neg = den < ZeroDuration();  const bool quotient_neg = num_neg != den_neg;  if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {    *rem = num_neg ? -InfiniteDuration() : InfiniteDuration();    return quotient_neg ? kint64min : kint64max;  }  if (time_internal::IsInfiniteDuration(den)) {    *rem = num;    return 0;  }  const uint128 a = MakeU128Ticks(num);  const uint128 b = MakeU128Ticks(den);  uint128 quotient128 = a / b;  if (satq) {    // Limits the quotient to the range of int64_t.    if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {      quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))                                 : uint128(static_cast<uint64_t>(kint64max));    }  }  const uint128 remainder128 = a - quotient128 * b;  *rem = MakeDurationFromU128(remainder128, num_neg);  if (!quotient_neg || quotient128 == 0) {    return Uint128Low64(quotient128) & kint64max;  }  // The quotient needs to be negated, but we need to carefully handle  // quotient128s with the top bit on.  return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;}}  // namespace time_internal//// Additive operators.//Duration& Duration::operator+=(Duration rhs) {  if (time_internal::IsInfiniteDuration(*this)) return *this;  if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;  const int64_t orig_rep_hi = rep_hi_;  rep_hi_ =      DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));  if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {    rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);    rep_lo_ -= kTicksPerSecond;  }  rep_lo_ += rhs.rep_lo_;  if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {    return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();  }  return *this;}Duration& Duration::operator-=(Duration rhs) {  if (time_internal::IsInfiniteDuration(*this)) return *this;  if (time_internal::IsInfiniteDuration(rhs)) {    return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();  }  const int64_t orig_rep_hi = rep_hi_;  rep_hi_ =      DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));  if (rep_lo_ < rhs.rep_lo_) {    rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);    rep_lo_ += kTicksPerSecond;  }  rep_lo_ -= rhs.rep_lo_;  if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {    return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();  }  return *this;}//// Multiplicative operators.//Duration& Duration::operator*=(int64_t r) {  if (time_internal::IsInfiniteDuration(*this)) {    const bool is_neg = (r < 0) != (rep_hi_ < 0);    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();  }  return *this = ScaleFixed<SafeMultiply>(*this, r);}Duration& Duration::operator*=(double r) {  if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {    const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();  }  return *this = ScaleDouble<std::multiplies>(*this, r);}Duration& Duration::operator/=(int64_t r) {  if (time_internal::IsInfiniteDuration(*this) || r == 0) {    const bool is_neg = (r < 0) != (rep_hi_ < 0);    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();  }  return *this = ScaleFixed<std::divides>(*this, r);}Duration& Duration::operator/=(double r) {  if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {    const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();  }  return *this = ScaleDouble<std::divides>(*this, r);}Duration& Duration::operator%=(Duration rhs) {  time_internal::IDivDuration(false, *this, rhs, this);  return *this;}double FDivDuration(Duration num, Duration den) {  // Arithmetic with infinity is sticky.  if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {    return (num < ZeroDuration()) == (den < ZeroDuration())               ? std::numeric_limits<double>::infinity()               : -std::numeric_limits<double>::infinity();  }  if (time_internal::IsInfiniteDuration(den)) return 0.0;  double a =      static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +      time_internal::GetRepLo(num);  double b =      static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +      time_internal::GetRepLo(den);  return a / b;}//// Trunc/Floor/Ceil.//Duration Trunc(Duration d, Duration unit) {  return d - (d % unit);}Duration Floor(const Duration d, const Duration unit) {  const absl::Duration td = Trunc(d, unit);  return td <= d ? td : td - AbsDuration(unit);}Duration Ceil(const Duration d, const Duration unit) {  const absl::Duration td = Trunc(d, unit);  return td >= d ? td : td + AbsDuration(unit);}//// Factory functions.//Duration DurationFromTimespec(timespec ts) {  if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {    int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;    return time_internal::MakeDuration(ts.tv_sec, ticks);  }  return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);}Duration DurationFromTimeval(timeval tv) {  if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {    int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;    return time_internal::MakeDuration(tv.tv_sec, ticks);  }  return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);}//// Conversion to other duration types.//int64_t ToInt64Nanoseconds(Duration d) {  if (time_internal::GetRepHi(d) >= 0 &&      time_internal::GetRepHi(d) >> 33 == 0) {    return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +           (time_internal::GetRepLo(d) / kTicksPerNanosecond);  }  return d / Nanoseconds(1);}int64_t ToInt64Microseconds(Duration d) {  if (time_internal::GetRepHi(d) >= 0 &&      time_internal::GetRepHi(d) >> 43 == 0) {    return (time_internal::GetRepHi(d) * 1000 * 1000) +           (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));  }  return d / Microseconds(1);}int64_t ToInt64Milliseconds(Duration d) {  if (time_internal::GetRepHi(d) >= 0 &&      time_internal::GetRepHi(d) >> 53 == 0) {    return (time_internal::GetRepHi(d) * 1000) +           (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));  }  return d / Milliseconds(1);}int64_t ToInt64Seconds(Duration d) {  int64_t hi = time_internal::GetRepHi(d);  if (time_internal::IsInfiniteDuration(d)) return hi;  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;  return hi;}int64_t ToInt64Minutes(Duration d) {  int64_t hi = time_internal::GetRepHi(d);  if (time_internal::IsInfiniteDuration(d)) return hi;  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;  return hi / 60;}int64_t ToInt64Hours(Duration d) {  int64_t hi = time_internal::GetRepHi(d);  if (time_internal::IsInfiniteDuration(d)) return hi;  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;  return hi / (60 * 60);}double ToDoubleNanoseconds(Duration d) {  return FDivDuration(d, Nanoseconds(1));}double ToDoubleMicroseconds(Duration d) {  return FDivDuration(d, Microseconds(1));}double ToDoubleMilliseconds(Duration d) {  return FDivDuration(d, Milliseconds(1));}double ToDoubleSeconds(Duration d) {  return FDivDuration(d, Seconds(1));}double ToDoubleMinutes(Duration d) {  return FDivDuration(d, Minutes(1));}double ToDoubleHours(Duration d) {  return FDivDuration(d, Hours(1));}timespec ToTimespec(Duration d) {  timespec ts;  if (!time_internal::IsInfiniteDuration(d)) {    int64_t rep_hi = time_internal::GetRepHi(d);    uint32_t rep_lo = time_internal::GetRepLo(d);    if (rep_hi < 0) {      // Tweak the fields so that unsigned division of rep_lo      // maps to truncation (towards zero) for the timespec.      rep_lo += kTicksPerNanosecond - 1;      if (rep_lo >= kTicksPerSecond) {        rep_hi += 1;        rep_lo -= kTicksPerSecond;      }    }    ts.tv_sec = rep_hi;    if (ts.tv_sec == rep_hi) {  // no time_t narrowing      ts.tv_nsec = rep_lo / kTicksPerNanosecond;      return ts;    }  }  if (d >= ZeroDuration()) {    ts.tv_sec = std::numeric_limits<time_t>::max();    ts.tv_nsec = 1000 * 1000 * 1000 - 1;  } else {    ts.tv_sec = std::numeric_limits<time_t>::min();    ts.tv_nsec = 0;  }  return ts;}timeval ToTimeval(Duration d) {  timeval tv;  timespec ts = ToTimespec(d);  if (ts.tv_sec < 0) {    // Tweak the fields so that positive division of tv_nsec    // maps to truncation (towards zero) for the timeval.    ts.tv_nsec += 1000 - 1;    if (ts.tv_nsec >= 1000 * 1000 * 1000) {      ts.tv_sec += 1;      ts.tv_nsec -= 1000 * 1000 * 1000;    }  }  tv.tv_sec = ts.tv_sec;  if (tv.tv_sec != ts.tv_sec) {  // narrowing    if (ts.tv_sec < 0) {      tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();      tv.tv_usec = 0;    } else {      tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();      tv.tv_usec = 1000 * 1000 - 1;    }    return tv;  }  tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000);  // suseconds_t  return tv;}std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {  return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);}std::chrono::microseconds ToChronoMicroseconds(Duration d) {  return time_internal::ToChronoDuration<std::chrono::microseconds>(d);}std::chrono::milliseconds ToChronoMilliseconds(Duration d) {  return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);}std::chrono::seconds ToChronoSeconds(Duration d) {  return time_internal::ToChronoDuration<std::chrono::seconds>(d);}std::chrono::minutes ToChronoMinutes(Duration d) {  return time_internal::ToChronoDuration<std::chrono::minutes>(d);}std::chrono::hours ToChronoHours(Duration d) {  return time_internal::ToChronoDuration<std::chrono::hours>(d);}//// To/From string formatting.//namespace {// Formats a positive 64-bit integer in the given field width.  Note that// it is up to the caller of Format64() to ensure that there is sufficient// space before ep to hold the conversion.char* Format64(char* ep, int width, int64_t v) {  do {    --width;    *--ep = '0' + (v % 10);  // contiguous digits  } while (v /= 10);  while (--width >= 0) *--ep = '0';  // zero pad  return ep;}// Helpers for FormatDuration() that format 'n' and append it to 'out'// followed by the given 'unit'.  If 'n' formats to "0", nothing is// appended (not even the unit).// A type that encapsulates how to display a value of a particular unit. For// values that are displayed with fractional parts, the precision indicates// where to round the value. The precision varies with the display unit because// a Duration can hold only quarters of a nanosecond, so displaying information// beyond that is just noise.//// For example, a microsecond value of 42.00025xxxxx should not display beyond 5// fractional digits, because it is in the noise of what a Duration can// represent.struct DisplayUnit {  const char* abbr;  int prec;  double pow10;};const DisplayUnit kDisplayNano = {"ns", 2, 1e2};const DisplayUnit kDisplayMicro = {"us", 5, 1e5};const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};const DisplayUnit kDisplaySec = {"s", 11, 1e11};const DisplayUnit kDisplayMin = {"m", -1, 0.0};   // prec ignoredconst DisplayUnit kDisplayHour = {"h", -1, 0.0};  // prec ignoredvoid AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {  char buf[sizeof("2562047788015216")];  // hours in max duration  char* const ep = buf + sizeof(buf);  char* bp = Format64(ep, 0, n);  if (*bp != '0' || bp + 1 != ep) {    out->append(bp, ep - bp);    out->append(unit.abbr);  }}// Note: unit.prec is limited to double's digits10 value (typically 15) so it// always fits in buf[].void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {  const int buf_size = std::numeric_limits<double>::digits10;  const int prec = std::min(buf_size, unit.prec);  char buf[buf_size];  // also large enough to hold integer part  char* ep = buf + sizeof(buf);  double d = 0;  int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);  int64_t int_part = d;  if (int_part != 0 || frac_part != 0) {    char* bp = Format64(ep, 0, int_part);  // always < 1000    out->append(bp, ep - bp);    if (frac_part != 0) {      out->push_back('.');      bp = Format64(ep, prec, frac_part);      while (ep[-1] == '0') --ep;      out->append(bp, ep - bp);    }    out->append(unit.abbr);  }}}  // namespace// From Go's doc at http://golang.org/pkg/time/#Duration.String//   [FormatDuration] returns a string representing the duration in the//   form "72h3m0.5s".  Leading zero units are omitted.  As a special//   case, durations less than one second format use a smaller unit//   (milli-, micro-, or nanoseconds) to ensure that the leading digit//   is non-zero.  The zero duration formats as 0, with no unit.std::string FormatDuration(Duration d) {  const Duration min_duration = Seconds(kint64min);  if (d == min_duration) {    // Avoid needing to negate kint64min by directly returning what the    // following code should produce in that case.    return "-2562047788015215h30m8s";  }  std::string s;  if (d < ZeroDuration()) {    s.append("-");    d = -d;  }  if (d == InfiniteDuration()) {    s.append("inf");  } else if (d < Seconds(1)) {    // Special case for durations with a magnitude < 1 second.  The duration    // is printed as a fraction of a single unit, e.g., "1.2ms".    if (d < Microseconds(1)) {      AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);    } else if (d < Milliseconds(1)) {      AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);    } else {      AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);    }  } else {    AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);    AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);    AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);  }  if (s.empty() || s == "-") {    s = "0";  }  return s;}namespace {// A helper for ParseDuration() that parses a leading number from the given// string and stores the result in *int_part/*frac_part/*frac_scale.  The// given string pointer is modified to point to the first unconsumed char.bool ConsumeDurationNumber(const char** dpp, int64_t* int_part,                           int64_t* frac_part, int64_t* frac_scale) {  *int_part = 0;  *frac_part = 0;  *frac_scale = 1;  // invariant: *frac_part < *frac_scale  const char* start = *dpp;  for (; std::isdigit(**dpp); *dpp += 1) {    const int d = **dpp - '0';  // contiguous digits    if (*int_part > kint64max / 10) return false;    *int_part *= 10;    if (*int_part > kint64max - d) return false;    *int_part += d;  }  const bool int_part_empty = (*dpp == start);  if (**dpp != '.') return !int_part_empty;  for (*dpp += 1; std::isdigit(**dpp); *dpp += 1) {    const int d = **dpp - '0';  // contiguous digits    if (*frac_scale <= kint64max / 10) {      *frac_part *= 10;      *frac_part += d;      *frac_scale *= 10;    }  }  return !int_part_empty || *frac_scale != 1;}// A helper for ParseDuration() that parses a leading unit designator (e.g.,// ns, us, ms, s, m, h) from the given string and stores the resulting unit// in "*unit".  The given string pointer is modified to point to the first// unconsumed char.bool ConsumeDurationUnit(const char** start, Duration* unit) {  const char *s = *start;  bool ok = true;  if (strncmp(s, "ns", 2) == 0) {    s += 2;    *unit = Nanoseconds(1);  } else if (strncmp(s, "us", 2) == 0) {    s += 2;    *unit = Microseconds(1);  } else if (strncmp(s, "ms", 2) == 0) {    s += 2;    *unit = Milliseconds(1);  } else if (strncmp(s, "s", 1) == 0) {    s += 1;    *unit = Seconds(1);  } else if (strncmp(s, "m", 1) == 0) {    s += 1;    *unit = Minutes(1);  } else if (strncmp(s, "h", 1) == 0) {    s += 1;    *unit = Hours(1);  } else {    ok = false;  }  *start = s;  return ok;}}  // namespace// From Go's doc at http://golang.org/pkg/time/#ParseDuration//   [ParseDuration] parses a duration string.  A duration string is//   a possibly signed sequence of decimal numbers, each with optional//   fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".//   Valid time units are "ns", "us" "ms", "s", "m", "h".bool ParseDuration(const std::string& dur_string, Duration* d) {  const char* start = dur_string.c_str();  int sign = 1;  if (*start == '-' || *start == '+') {    sign = *start == '-' ? -1 : 1;    ++start;  }  // Can't parse a duration from an empty std::string.  if (*start == '\0') {    return false;  }  // Special case for a std::string of "0".  if (*start == '0' && *(start + 1) == '\0') {    *d = ZeroDuration();    return true;  }  if (strcmp(start, "inf") == 0) {    *d = sign * InfiniteDuration();    return true;  }  Duration dur;  while (*start != '\0') {    int64_t int_part;    int64_t frac_part;    int64_t frac_scale;    Duration unit;    if (!ConsumeDurationNumber(&start, &int_part, &frac_part, &frac_scale) ||        !ConsumeDurationUnit(&start, &unit)) {      return false;    }    if (int_part != 0) dur += sign * int_part * unit;    if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;  }  *d = dur;  return true;}bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {  return ParseDuration(text, dst);}std::string UnparseFlag(Duration d) { return FormatDuration(d); }}  // namespace absl
 |