| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/time/clock.h"#include "absl/base/attributes.h"#ifdef _WIN32#include <windows.h>#endif#include <algorithm>#include <atomic>#include <cerrno>#include <cstdint>#include <ctime>#include <limits>#include "absl/base/internal/spinlock.h"#include "absl/base/internal/unscaledcycleclock.h"#include "absl/base/macros.h"#include "absl/base/port.h"#include "absl/base/thread_annotations.h"namespace absl {Time Now() {  // TODO(bww): Get a timespec instead so we don't have to divide.  int64_t n = absl::GetCurrentTimeNanos();  if (n >= 0) {    return time_internal::FromUnixDuration(        time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));  }  return time_internal::FromUnixDuration(absl::Nanoseconds(n));}}  // namespace absl// Decide if we should use the fast GetCurrentTimeNanos() algorithm// based on the cyclecounter, otherwise just get the time directly// from the OS on every call. This can be chosen at compile-time via// -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]#ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS#if ABSL_USE_UNSCALED_CYCLECLOCK#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 1#else#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0#endif#endif#if defined(__APPLE__) || defined(_WIN32)#include "absl/time/internal/get_current_time_chrono.inc"#else#include "absl/time/internal/get_current_time_posix.inc"#endif// Allows override by test.#ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM#define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \  ::absl::time_internal::GetCurrentTimeNanosFromSystem()#endif#if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOSnamespace absl {int64_t GetCurrentTimeNanos() {  return GET_CURRENT_TIME_NANOS_FROM_SYSTEM();}}  // namespace absl#else  // Use the cyclecounter-based implementation below.// Allows override by test.#ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW#define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \  ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()#endif// The following counters are used only by the test code.static int64_t stats_initializations;static int64_t stats_reinitializations;static int64_t stats_calibrations;static int64_t stats_slow_paths;static int64_t stats_fast_slow_paths;namespace absl {namespace time_internal {// This is a friend wrapper around UnscaledCycleClock::Now()// (needed to access UnscaledCycleClock).class UnscaledCycleClockWrapperForGetCurrentTime { public:  static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }};}  // namespace time_internal// uint64_t is used in this module to provide an extra bit in multiplications// Return the time in ns as told by the kernel interface.  Place in *cycleclock// the value of the cycleclock at about the time of the syscall.// This call represents the time base that this module synchronizes to.// Ensures that *cycleclock does not step back by up to (1 << 16) from// last_cycleclock, to discard small backward counter steps.  (Larger steps are// assumed to be complete resyncs, which shouldn't happen.  If they do, a full// reinitialization of the outer algorithm should occur.)static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,                                             uint64_t *cycleclock) {  // We try to read clock values at about the same time as the kernel clock.  // This value gets adjusted up or down as estimate of how long that should  // take, so we can reject attempts that take unusually long.  static std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};  uint64_t local_approx_syscall_time_in_cycles =  // local copy      approx_syscall_time_in_cycles.load(std::memory_order_relaxed);  int64_t current_time_nanos_from_system;  uint64_t before_cycles;  uint64_t after_cycles;  uint64_t elapsed_cycles;  int loops = 0;  do {    before_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();    current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();    after_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();    // elapsed_cycles is unsigned, so is large on overflow    elapsed_cycles = after_cycles - before_cycles;    if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&        ++loops == 20) {  // clock changed frequencies?  Back off.      loops = 0;      if (local_approx_syscall_time_in_cycles < 1000 * 1000) {        local_approx_syscall_time_in_cycles =            (local_approx_syscall_time_in_cycles + 1) << 1;      }      approx_syscall_time_in_cycles.store(          local_approx_syscall_time_in_cycles,          std::memory_order_relaxed);    }  } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||           last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));  // Number of times in a row we've seen a kernel time call take substantially  // less than approx_syscall_time_in_cycles.  static std::atomic<uint32_t> seen_smaller{ 0 };  // Adjust approx_syscall_time_in_cycles to be within a factor of 2  // of the typical time to execute one iteration of the loop above.  if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {    // measured time is no smaller than half current approximation    seen_smaller.store(0, std::memory_order_relaxed);  } else if (seen_smaller.fetch_add(1, std::memory_order_relaxed) >= 3) {    // smaller delays several times in a row; reduce approximation by 12.5%    const uint64_t new_approximation =        local_approx_syscall_time_in_cycles -        (local_approx_syscall_time_in_cycles >> 3);    approx_syscall_time_in_cycles.store(new_approximation,                                        std::memory_order_relaxed);    seen_smaller.store(0, std::memory_order_relaxed);  }  *cycleclock = after_cycles;  return current_time_nanos_from_system;}// ---------------------------------------------------------------------// An implementation of reader-write locks that use no atomic ops in the read// case.  This is a generalization of Lamport's method for reading a multiword// clock.  Increment a word on each write acquisition, using the low-order bit// as a spinlock; the word is the high word of the "clock".  Readers read the// high word, then all other data, then the high word again, and repeat the// read if the reads of the high words yields different answers, or an odd// value (either case suggests possible interference from a writer).// Here we use a spinlock to ensure only one writer at a time, rather than// spinning on the bottom bit of the word to benefit from SpinLock// spin-delay tuning.// Acquire seqlock (*seq) and return the value to be written to unlock.static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {  uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);  // We put a release fence between update to *seq and writes to shared data.  // Thus all stores to shared data are effectively release operations and  // update to *seq above cannot be re-ordered past any of them.  Note that  // this barrier is not for the fetch_add above.  A release barrier for the  // fetch_add would be before it, not after.  std::atomic_thread_fence(std::memory_order_release);  return x + 2;   // original word plus 2}// Release seqlock (*seq) by writing x to it---a value previously returned by// SeqAcquire.static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {  // The unlock store to *seq must have release ordering so that all  // updates to shared data must finish before this store.  seq->store(x, std::memory_order_release);  // release lock for readers}// ---------------------------------------------------------------------// "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.enum { kScale = 30 };// The minimum interval between samples of the time base.// We pick enough time to amortize the cost of the sample,// to get a reasonably accurate cycle counter rate reading,// and not so much that calculations will overflow 64-bits.static const uint64_t kMinNSBetweenSamples = 2000 << 20;// We require that kMinNSBetweenSamples shifted by kScale// have at least a bit left over for 64-bit calculations.static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==               kMinNSBetweenSamples,               "cannot represent kMaxBetweenSamplesNSScaled");// A reader-writer lock protecting the static locations below.// See SeqAcquire() and SeqRelease() above.static absl::base_internal::SpinLock lock(    absl::base_internal::kLinkerInitialized);static std::atomic<uint64_t> seq(0);// data from a sample of the kernel's time valuestruct TimeSampleAtomic {  std::atomic<uint64_t> raw_ns;              // raw kernel time  std::atomic<uint64_t> base_ns;             // our estimate of time  std::atomic<uint64_t> base_cycles;         // cycle counter reading  std::atomic<uint64_t> nsscaled_per_cycle;  // cycle period  // cycles before we'll sample again (a scaled reciprocal of the period,  // to avoid a division on the fast path).  std::atomic<uint64_t> min_cycles_per_sample;};// Same again, but with non-atomic typesstruct TimeSample {  uint64_t raw_ns;                 // raw kernel time  uint64_t base_ns;                // our estimate of time  uint64_t base_cycles;            // cycle counter reading  uint64_t nsscaled_per_cycle;     // cycle period  uint64_t min_cycles_per_sample;  // approx cycles before next sample};static struct TimeSampleAtomic last_sample;   // the last sample; under seqstatic int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;// Read the contents of *atomic into *sample.// Each field is read atomically, but to maintain atomicity between fields,// the access must be done under a lock.static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,                                 struct TimeSample *sample) {  sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);  sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);  sample->nsscaled_per_cycle =      atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);  sample->min_cycles_per_sample =      atomic->min_cycles_per_sample.load(std::memory_order_relaxed);  sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);}// Public routine.// Algorithm:  We wish to compute real time from a cycle counter.  In normal// operation, we construct a piecewise linear approximation to the kernel time// source, using the cycle counter value.  The start of each line segment is at// the same point as the end of the last, but may have a different slope (that// is, a different idea of the cycle counter frequency).  Every couple of// seconds, the kernel time source is sampled and compared with the current// approximation.  A new slope is chosen that, if followed for another couple// of seconds, will correct the error at the current position.  The information// for a sample is in the "last_sample" struct.  The linear approximation is//   estimated_time = last_sample.base_ns +//     last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)// (ns_per_cycle is actually stored in different units and scaled, to avoid// overflow).  The base_ns of the next linear approximation is the// estimated_time using the last approximation; the base_cycles is the cycle// counter value at that time; the ns_per_cycle is the number of ns per cycle// measured since the last sample, but adjusted so that most of the difference// between the estimated_time and the kernel time will be corrected by the// estimated time to the next sample.  In normal operation, this algorithm// relies on:// - the cycle counter and kernel time rates not changing a lot in a few//   seconds.// - the client calling into the code often compared to a couple of seconds, so//   the time to the next correction can be estimated.// Any time ns_per_cycle is not known, a major error is detected, or the// assumption about frequent calls is violated, the implementation returns the// kernel time.  It records sufficient data that a linear approximation can// resume a little later.int64_t GetCurrentTimeNanos() {  // read the data from the "last_sample" struct (but don't need raw_ns yet)  // The reads of "seq" and test of the values emulate a reader lock.  uint64_t base_ns;  uint64_t base_cycles;  uint64_t nsscaled_per_cycle;  uint64_t min_cycles_per_sample;  uint64_t seq_read0;  uint64_t seq_read1;  // If we have enough information to interpolate, the value returned will be  // derived from this cycleclock-derived time estimate.  On some platforms  // (POWER) the function to retrieve this value has enough complexity to  // contribute to register pressure - reading it early before initializing  // the other pieces of the calculation minimizes spill/restore instructions,  // minimizing icache cost.  uint64_t now_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();  // Acquire pairs with the barrier in SeqRelease - if this load sees that  // store, the shared-data reads necessarily see that SeqRelease's updates  // to the same shared data.  seq_read0 = seq.load(std::memory_order_acquire);  base_ns = last_sample.base_ns.load(std::memory_order_relaxed);  base_cycles = last_sample.base_cycles.load(std::memory_order_relaxed);  nsscaled_per_cycle =      last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);  min_cycles_per_sample =      last_sample.min_cycles_per_sample.load(std::memory_order_relaxed);  // This acquire fence pairs with the release fence in SeqAcquire.  Since it  // is sequenced between reads of shared data and seq_read1, the reads of  // shared data are effectively acquiring.  std::atomic_thread_fence(std::memory_order_acquire);  // The shared-data reads are effectively acquire ordered, and the  // shared-data writes are effectively release ordered. Therefore if our  // shared-data reads see any of a particular update's shared-data writes,  // seq_read1 is guaranteed to see that update's SeqAcquire.  seq_read1 = seq.load(std::memory_order_relaxed);  // Fast path.  Return if min_cycles_per_sample has not yet elapsed since the  // last sample, and we read a consistent sample.  The fast path activates  // only when min_cycles_per_sample is non-zero, which happens when we get an  // estimate for the cycle time.  The predicate will fail if now_cycles <  // base_cycles, or if some other thread is in the slow path.  //  // Since we now read now_cycles before base_ns, it is possible for now_cycles  // to be less than base_cycles (if we were interrupted between those loads and  // last_sample was updated). This is harmless, because delta_cycles will wrap  // and report a time much much bigger than min_cycles_per_sample. In that case  // we will take the slow path.  uint64_t delta_cycles = now_cycles - base_cycles;  if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&      delta_cycles < min_cycles_per_sample) {    return base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale);  }  return GetCurrentTimeNanosSlowPath();}// Return (a << kScale)/b.// Zero is returned if b==0.   Scaling is performed internally to// preserve precision without overflow.static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {  // Find maximum safe_shift so that  //  0 <= safe_shift <= kScale  and  (a << safe_shift) does not overflow.  int safe_shift = kScale;  while (((a << safe_shift) >> safe_shift) != a) {    safe_shift--;  }  uint64_t scaled_b = b >> (kScale - safe_shift);  uint64_t quotient = 0;  if (scaled_b != 0) {    quotient = (a << safe_shift) / scaled_b;  }  return quotient;}static uint64_t UpdateLastSample(    uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,    const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;// The slow path of GetCurrentTimeNanos().  This is taken while gathering// initial samples, when enough time has elapsed since the last sample, and if// any other thread is writing to last_sample.//// Manually mark this 'noinline' to minimize stack frame size of the fast// path.  Without this, sometimes a compiler may inline this big block of code// into the fast past.  That causes lots of register spills and reloads that// are unnecessary unless the slow path is taken.//// TODO(absl-team): Remove this attribute when our compiler is smart enough// to do the right thing.ABSL_ATTRIBUTE_NOINLINEstatic int64_t GetCurrentTimeNanosSlowPath() LOCKS_EXCLUDED(lock) {  // Serialize access to slow-path.  Fast-path readers are not blocked yet, and  // code below must not modify last_sample until the seqlock is acquired.  lock.Lock();  // Sample the kernel time base.  This is the definition of  // "now" if we take the slow path.  static uint64_t last_now_cycles;  // protected by lock  uint64_t now_cycles;  uint64_t now_ns = GetCurrentTimeNanosFromKernel(last_now_cycles, &now_cycles);  last_now_cycles = now_cycles;  uint64_t estimated_base_ns;  // ----------  // Read the "last_sample" values again; this time holding the write lock.  struct TimeSample sample;  ReadTimeSampleAtomic(&last_sample, &sample);  // ----------  // Try running the fast path again; another thread may have updated the  // sample between our run of the fast path and the sample we just read.  uint64_t delta_cycles = now_cycles - sample.base_cycles;  if (delta_cycles < sample.min_cycles_per_sample) {    // Another thread updated the sample.  This path does not take the seqlock    // so that blocked readers can make progress without blocking new readers.    estimated_base_ns = sample.base_ns +        ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);    stats_fast_slow_paths++;  } else {    estimated_base_ns =        UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);  }  lock.Unlock();  return estimated_base_ns;}// Main part of the algorithm.  Locks out readers, updates the approximation// using the new sample from the kernel, and stores the result in last_sample// for readers.  Returns the new estimated time.static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,                                 uint64_t delta_cycles,                                 const struct TimeSample *sample)    EXCLUSIVE_LOCKS_REQUIRED(lock) {  uint64_t estimated_base_ns = now_ns;  uint64_t lock_value = SeqAcquire(&seq);  // acquire seqlock to block readers  // The 5s in the next if-statement limits the time for which we will trust  // the cycle counter and our last sample to give a reasonable result.  // Errors in the rate of the source clock can be multiplied by the ratio  // between this limit and kMinNSBetweenSamples.  if (sample->raw_ns == 0 ||  // no recent sample, or clock went backwards      sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||      now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {    // record this sample, and forget any previously known slope.    last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);    last_sample.base_ns.store(estimated_base_ns, std::memory_order_relaxed);    last_sample.base_cycles.store(now_cycles, std::memory_order_relaxed);    last_sample.nsscaled_per_cycle.store(0, std::memory_order_relaxed);    last_sample.min_cycles_per_sample.store(0, std::memory_order_relaxed);    stats_initializations++;  } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&             sample->base_cycles + 100 < now_cycles) {    // Enough time has passed to compute the cycle time.    if (sample->nsscaled_per_cycle != 0) {  // Have a cycle time estimate.      // Compute time from counter reading, but avoiding overflow      // delta_cycles may be larger than on the fast path.      uint64_t estimated_scaled_ns;      int s = -1;      do {        s++;        estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;      } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=               (delta_cycles >> s));      estimated_base_ns = sample->base_ns +                          (estimated_scaled_ns >> (kScale - s));    }    // Compute the assumed cycle time kMinNSBetweenSamples ns into the future    // assuming the cycle counter rate stays the same as the last interval.    uint64_t ns = now_ns - sample->raw_ns;    uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);    uint64_t assumed_next_sample_delta_cycles =        SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);    int64_t diff_ns = now_ns - estimated_base_ns;  // estimate low by this much    // We want to set nsscaled_per_cycle so that our estimate of the ns time    // at the assumed cycle time is the assumed ns time.    // That is, we want to set nsscaled_per_cycle so:    //  kMinNSBetweenSamples + diff_ns  ==    //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale    // But we wish to damp oscillations, so instead correct only most    // of our current error, by solving:    //  kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==    //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale    ns = kMinNSBetweenSamples + diff_ns - (diff_ns / 16);    uint64_t new_nsscaled_per_cycle =        SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);    if (new_nsscaled_per_cycle != 0 &&        diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {      // record the cycle time measurement      last_sample.nsscaled_per_cycle.store(          new_nsscaled_per_cycle, std::memory_order_relaxed);      uint64_t new_min_cycles_per_sample =          SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);      last_sample.min_cycles_per_sample.store(          new_min_cycles_per_sample, std::memory_order_relaxed);      stats_calibrations++;    } else {  // something went wrong; forget the slope      last_sample.nsscaled_per_cycle.store(0, std::memory_order_relaxed);      last_sample.min_cycles_per_sample.store(0, std::memory_order_relaxed);      estimated_base_ns = now_ns;      stats_reinitializations++;    }    last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);    last_sample.base_ns.store(estimated_base_ns, std::memory_order_relaxed);    last_sample.base_cycles.store(now_cycles, std::memory_order_relaxed);  } else {    // have a sample, but no slope; waiting for enough time for a calibration    stats_slow_paths++;  }  SeqRelease(&seq, lock_value);  // release the readers  return estimated_base_ns;}}  // namespace absl#endif  // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOSnamespace absl {namespace {// Returns the maximum duration that SleepOnce() can sleep for.constexpr absl::Duration MaxSleep() {#ifdef _WIN32  // Windows Sleep() takes unsigned long argument in milliseconds.  return absl::Milliseconds(      std::numeric_limits<unsigned long>::max());  // NOLINT(runtime/int)#else  return absl::Seconds(std::numeric_limits<time_t>::max());#endif}// Sleeps for the given duration.// REQUIRES: to_sleep <= MaxSleep().void SleepOnce(absl::Duration to_sleep) {#ifdef _WIN32  Sleep(to_sleep / absl::Milliseconds(1));#else  struct timespec sleep_time = absl::ToTimespec(to_sleep);  while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {    // Ignore signals and wait for the full interval to elapse.  }#endif}}  // namespace}  // namespace abslextern "C" {ABSL_ATTRIBUTE_WEAK void AbslInternalSleepFor(absl::Duration duration) {  while (duration > absl::ZeroDuration()) {    absl::Duration to_sleep = std::min(duration, absl::MaxSleep());    absl::SleepOnce(to_sleep);    duration -= to_sleep;  }}}  // extern "C"
 |