| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/container/internal/hashtablez_sampler.h"#include <atomic>#include <cassert>#include <cmath>#include <functional>#include <limits>#include "absl/base/attributes.h"#include "absl/container/internal/have_sse.h"#include "absl/debugging/stacktrace.h"#include "absl/memory/memory.h"#include "absl/synchronization/mutex.h"namespace absl {namespace container_internal {constexpr int HashtablezInfo::kMaxStackDepth;namespace {ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{   false};ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10};ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20};// Returns the next pseudo-random value.// pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48// This is the lrand64 generator.uint64_t NextRandom(uint64_t rnd) {  const uint64_t prng_mult = uint64_t{0x5DEECE66D};  const uint64_t prng_add = 0xB;  const uint64_t prng_mod_power = 48;  const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power);  return (prng_mult * rnd + prng_add) & prng_mod_mask;}// Generates a geometric variable with the specified mean.// This is done by generating a random number between 0 and 1 and applying// the inverse cumulative distribution function for an exponential.// Specifically: Let m be the inverse of the sample period, then// the probability distribution function is m*exp(-mx) so the CDF is// p = 1 - exp(-mx), so// q = 1 - p = exp(-mx)// log_e(q) = -mx// -log_e(q)/m = x// log_2(q) * (-log_e(2) * 1/m) = x// In the code, q is actually in the range 1 to 2**26, hence the -26 below//int64_t GetGeometricVariable(int64_t mean) {#if ABSL_HAVE_THREAD_LOCAL  thread_local#else   // ABSL_HAVE_THREAD_LOCAL  // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when  // there are not thread locals.  Thus, a single global rng is acceptable for  // that case.  static#endif  // ABSL_HAVE_THREAD_LOCAL      uint64_t rng = []() {        // We don't get well distributed numbers from this so we call        // NextRandom() a bunch to mush the bits around.  We use a global_rand        // to handle the case where the same thread (by memory address) gets        // created and destroyed repeatedly.        ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);        uint64_t r = reinterpret_cast<uint64_t>(&rng) +                   global_rand.fetch_add(1, std::memory_order_relaxed);        for (int i = 0; i < 20; ++i) {          r = NextRandom(r);        }        return r;      }();  rng = NextRandom(rng);  // Take the top 26 bits as the random number  // (This plus the 1<<58 sampling bound give a max possible step of  // 5194297183973780480 bytes.)  const uint64_t prng_mod_power = 48;  // Number of bits in prng  // The uint32_t cast is to prevent a (hard-to-reproduce) NAN  // under piii debug for some binaries.  double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0;  // Put the computed p-value through the CDF of a geometric.  double interval = (log2(q) - 26) * (-std::log(2.0) * mean);  // Very large values of interval overflow int64_t. If we happen to  // hit such improbable condition, we simply cheat and clamp interval  // to largest supported value.  if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {    return std::numeric_limits<int64_t>::max() / 2;  }  // Small values of interval are equivalent to just sampling next time.  if (interval < 1) {    return 1;  }  return static_cast<int64_t>(interval);}}  // namespaceHashtablezSampler& HashtablezSampler::Global() {  static auto* sampler = new HashtablezSampler();  return *sampler;}HashtablezSampler::DisposeCallback HashtablezSampler::SetDisposeCallback(    DisposeCallback f) {  return dispose_.exchange(f, std::memory_order_relaxed);}HashtablezInfo::HashtablezInfo() { PrepareForSampling(); }HashtablezInfo::~HashtablezInfo() = default;void HashtablezInfo::PrepareForSampling() {  capacity.store(0, std::memory_order_relaxed);  size.store(0, std::memory_order_relaxed);  num_erases.store(0, std::memory_order_relaxed);  max_probe_length.store(0, std::memory_order_relaxed);  total_probe_length.store(0, std::memory_order_relaxed);  hashes_bitwise_or.store(0, std::memory_order_relaxed);  hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed);  create_time = absl::Now();  // The inliner makes hardcoded skip_count difficult (especially when combined  // with LTO).  We use the ability to exclude stacks by regex when encoding  // instead.  depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth,                              /* skip_count= */ 0);  dead = nullptr;}HashtablezSampler::HashtablezSampler()    : dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) {  absl::MutexLock l(&graveyard_.init_mu);  graveyard_.dead = &graveyard_;}HashtablezSampler::~HashtablezSampler() {  HashtablezInfo* s = all_.load(std::memory_order_acquire);  while (s != nullptr) {    HashtablezInfo* next = s->next;    delete s;    s = next;  }}void HashtablezSampler::PushNew(HashtablezInfo* sample) {  sample->next = all_.load(std::memory_order_relaxed);  while (!all_.compare_exchange_weak(sample->next, sample,                                     std::memory_order_release,                                     std::memory_order_relaxed)) {  }}void HashtablezSampler::PushDead(HashtablezInfo* sample) {  if (auto* dispose = dispose_.load(std::memory_order_relaxed)) {    dispose(*sample);  }  absl::MutexLock graveyard_lock(&graveyard_.init_mu);  absl::MutexLock sample_lock(&sample->init_mu);  sample->dead = graveyard_.dead;  graveyard_.dead = sample;}HashtablezInfo* HashtablezSampler::PopDead() {  absl::MutexLock graveyard_lock(&graveyard_.init_mu);  // The list is circular, so eventually it collapses down to  //   graveyard_.dead == &graveyard_  // when it is empty.  HashtablezInfo* sample = graveyard_.dead;  if (sample == &graveyard_) return nullptr;  absl::MutexLock sample_lock(&sample->init_mu);  graveyard_.dead = sample->dead;  sample->PrepareForSampling();  return sample;}HashtablezInfo* HashtablezSampler::Register() {  int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed);  if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) {    size_estimate_.fetch_sub(1, std::memory_order_relaxed);    dropped_samples_.fetch_add(1, std::memory_order_relaxed);    return nullptr;  }  HashtablezInfo* sample = PopDead();  if (sample == nullptr) {    // Resurrection failed.  Hire a new warlock.    sample = new HashtablezInfo();    PushNew(sample);  }  return sample;}void HashtablezSampler::Unregister(HashtablezInfo* sample) {  PushDead(sample);  size_estimate_.fetch_sub(1, std::memory_order_relaxed);}int64_t HashtablezSampler::Iterate(    const std::function<void(const HashtablezInfo& stack)>& f) {  HashtablezInfo* s = all_.load(std::memory_order_acquire);  while (s != nullptr) {    absl::MutexLock l(&s->init_mu);    if (s->dead == nullptr) {      f(*s);    }    s = s->next;  }  return dropped_samples_.load(std::memory_order_relaxed);}HashtablezInfo* SampleSlow(int64_t* next_sample) {  if (kAbslContainerInternalSampleEverything) {    *next_sample = 1;    return HashtablezSampler::Global().Register();  }  bool first = *next_sample < 0;  *next_sample = GetGeometricVariable(      g_hashtablez_sample_parameter.load(std::memory_order_relaxed));  // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold  // low enough that we will start sampling in a reasonable time, so we just use  // the default sampling rate.  if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr;  // We will only be negative on our first count, so we should just retry in  // that case.  if (first) {    if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr;    return SampleSlow(next_sample);  }  return HashtablezSampler::Global().Register();}#if ABSL_PER_THREAD_TLS == 1ABSL_PER_THREAD_TLS_KEYWORD int64_t next_sample = 0;#endif  // ABSL_PER_THREAD_TLS == 1void UnsampleSlow(HashtablezInfo* info) {  HashtablezSampler::Global().Unregister(info);}void RecordInsertSlow(HashtablezInfo* info, size_t hash,                      size_t distance_from_desired) {  // SwissTables probe in groups of 16, so scale this to count items probes and  // not offset from desired.  size_t probe_length = distance_from_desired;#if SWISSTABLE_HAVE_SSE2  probe_length /= 16;#else  probe_length /= 8;#endif  info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed);  info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed);  info->max_probe_length.store(      std::max(info->max_probe_length.load(std::memory_order_relaxed),               probe_length),      std::memory_order_relaxed);  info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed);  info->size.fetch_add(1, std::memory_order_relaxed);}void SetHashtablezEnabled(bool enabled) {  g_hashtablez_enabled.store(enabled, std::memory_order_release);}void SetHashtablezSampleParameter(int32_t rate) {  if (rate > 0) {    g_hashtablez_sample_parameter.store(rate, std::memory_order_release);  } else {    ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld",                 static_cast<long long>(rate));  // NOLINT(runtime/int)  }}void SetHashtablezMaxSamples(int32_t max) {  if (max > 0) {    g_hashtablez_max_samples.store(max, std::memory_order_release);  } else {    ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld",                 static_cast<long long>(max));  // NOLINT(runtime/int)  }}}  // namespace container_internal}  // namespace absl
 |