| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// Produce stack trace#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))#include <ucontext.h>  // for ucontext_t#endif#if !defined(_WIN32)#include <unistd.h>#endif#include <cassert>#include <cstdint>#include "absl/base/macros.h"#include "absl/base/port.h"#include "absl/debugging/internal/address_is_readable.h"#include "absl/debugging/internal/vdso_support.h"  // a no-op on non-elf or non-glibc systems#include "absl/debugging/stacktrace.h"#include "absl/base/internal/raw_logging.h"#if defined(__linux__) && defined(__i386__)// Count "push %reg" instructions in VDSO __kernel_vsyscall(),// preceeding "syscall" or "sysenter".// If __kernel_vsyscall uses frame pointer, answer 0.//// kMaxBytes tells how many instruction bytes of __kernel_vsyscall// to analyze before giving up. Up to kMaxBytes+1 bytes of// instructions could be accessed.//// Here are known __kernel_vsyscall instruction sequences://// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).// Used on Intel.//  0xffffe400 <__kernel_vsyscall+0>:       push   %ecx//  0xffffe401 <__kernel_vsyscall+1>:       push   %edx//  0xffffe402 <__kernel_vsyscall+2>:       push   %ebp//  0xffffe403 <__kernel_vsyscall+3>:       mov    %esp,%ebp//  0xffffe405 <__kernel_vsyscall+5>:       sysenter//// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).// Used on AMD.//  0xffffe400 <__kernel_vsyscall+0>:       push   %ebp//  0xffffe401 <__kernel_vsyscall+1>:       mov    %ecx,%ebp//  0xffffe403 <__kernel_vsyscall+3>:       syscall//// The sequence below isn't actually expected in Google fleet,// here only for completeness. Remove this comment from OSS release.// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)//  0xffffe400 <__kernel_vsyscall+0>:       int $0x80//  0xffffe401 <__kernel_vsyscall+1>:       ret//static const int kMaxBytes = 10;// We use assert()s instead of DCHECK()s -- this is too low level// for DCHECK().static int CountPushInstructions(const unsigned char *const addr) {  int result = 0;  for (int i = 0; i < kMaxBytes; ++i) {    if (addr[i] == 0x89) {      // "mov reg,reg"      if (addr[i + 1] == 0xE5) {        // Found "mov %esp,%ebp".        return 0;        }      ++i;  // Skip register encoding byte.    } else if (addr[i] == 0x0F &&               (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {      // Found "sysenter" or "syscall".      return result;    } else if ((addr[i] & 0xF0) == 0x50) {      // Found "push %reg".      ++result;    } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {      // Found "int $0x80"      assert(result == 0);      return 0;    } else {      // Unexpected instruction.      assert(false && "unexpected instruction in __kernel_vsyscall");      return 0;    }  }  // Unexpected: didn't find SYSENTER or SYSCALL in  // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.  assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");  return 0;}#endif// Assume stack frames larger than 100,000 bytes are bogus.static const int kMaxFrameBytes = 100000;// Returns the stack frame pointer from signal context, 0 if unknown.// vuc is a ucontext_t *.  We use void* to avoid the use// of ucontext_t on non-POSIX systems.static uintptr_t GetFP(const void *vuc) {#if !defined(__linux__)  static_cast<void>(vuc);  // Avoid an unused argument compiler warning.#else  if (vuc != nullptr) {    auto *uc = reinterpret_cast<const ucontext_t *>(vuc);#if defined(__i386__)    const auto bp = uc->uc_mcontext.gregs[REG_EBP];    const auto sp = uc->uc_mcontext.gregs[REG_ESP];#elif defined(__x86_64__)    const auto bp = uc->uc_mcontext.gregs[REG_RBP];    const auto sp = uc->uc_mcontext.gregs[REG_RSP];#else    const uintptr_t bp = 0;    const uintptr_t sp = 0;#endif    // Sanity-check that the base pointer is valid.  It should be as long as    // SHRINK_WRAP_FRAME_POINTER is not set, but it's possible that some code in    // the process is compiled with --copt=-fomit-frame-pointer or    // --copt=-momit-leaf-frame-pointer.    //    // TODO(bcmills): -momit-leaf-frame-pointer is currently the default    // behavior when building with clang.  Talk to the C++ toolchain team about    // fixing that.    if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp;    // If bp isn't a plausible frame pointer, return the stack pointer instead.    // If we're lucky, it points to the start of a stack frame; otherwise, we'll    // get one frame of garbage in the stack trace and fail the sanity check on    // the next iteration.    return sp;  }#endif  return 0;}// Given a pointer to a stack frame, locate and return the calling// stackframe, or return null if no stackframe can be found. Perform sanity// checks (the strictness of which is controlled by the boolean parameter// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.template <bool STRICT_UNWINDING, bool WITH_CONTEXT>ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.static void **NextStackFrame(void **old_fp, const void *uc) {  void **new_fp = (void **)*old_fp;#if defined(__linux__) && defined(__i386__)  if (WITH_CONTEXT && uc != nullptr) {    // How many "push %reg" instructions are there at __kernel_vsyscall?    // This is constant for a given kernel and processor, so compute    // it only once.    static int num_push_instructions = -1;  // Sentinel: not computed yet.    // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly    // be there.    static const unsigned char *kernel_rt_sigreturn_address = nullptr;    static const unsigned char *kernel_vsyscall_address = nullptr;    if (num_push_instructions == -1) {      absl::debug_internal::VDSOSupport vdso;      if (vdso.IsPresent()) {        absl::debug_internal::VDSOSupport::SymbolInfo            rt_sigreturn_symbol_info;        absl::debug_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;        if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,                               &rt_sigreturn_symbol_info) ||            !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,                               &vsyscall_symbol_info) ||            rt_sigreturn_symbol_info.address == nullptr ||            vsyscall_symbol_info.address == nullptr) {          // Unexpected: 32-bit VDSO is present, yet one of the expected          // symbols is missing or null.          assert(false && "VDSO is present, but doesn't have expected symbols");          num_push_instructions = 0;        } else {          kernel_rt_sigreturn_address =              reinterpret_cast<const unsigned char *>(                  rt_sigreturn_symbol_info.address);          kernel_vsyscall_address =              reinterpret_cast<const unsigned char *>(                  vsyscall_symbol_info.address);          num_push_instructions =              CountPushInstructions(kernel_vsyscall_address);        }      } else {        num_push_instructions = 0;      }    }    if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&        old_fp[1] == kernel_rt_sigreturn_address) {      const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);      // This kernel does not use frame pointer in its VDSO code,      // and so %ebp is not suitable for unwinding.      void **const reg_ebp =          reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);      const unsigned char *const reg_eip =          reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);      if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&          reg_eip - kernel_vsyscall_address < kMaxBytes) {        // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.        // Restore from 'ucv' instead.        void **const reg_esp =            reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);        // Check that alleged %esp is not null and is reasonably aligned.        if (reg_esp &&            ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {          // Check that alleged %esp is actually readable. This is to prevent          // "double fault" in case we hit the first fault due to e.g. stack          // corruption.          void *const reg_esp2 = reg_esp[num_push_instructions - 1];          if (absl::debug_internal::AddressIsReadable(reg_esp2)) {            // Alleged %esp is readable, use it for further unwinding.            new_fp = reinterpret_cast<void **>(reg_esp2);          }        }      }    }  }#endif  const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);  const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);  // Check that the transition from frame pointer old_fp to frame  // pointer new_fp isn't clearly bogus.  Skip the checks if new_fp  // matches the signal context, so that we don't skip out early when  // using an alternate signal stack.  //  // TODO(bcmills): The GetFP call should be completely unnecessary when  // SHRINK_WRAP_FRAME_POINTER is set (because we should be back in the thread's  // stack by this point), but it is empirically still needed (e.g. when the  // stack includes a call to abort).  unw_get_reg returns UNW_EBADREG for some  // frames.  Figure out why GetValidFrameAddr and/or libunwind isn't doing what  // it's supposed to.  if (STRICT_UNWINDING &&      (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {    // With the stack growing downwards, older stack frame must be    // at a greater address that the current one.    if (new_fp_u <= old_fp_u) return nullptr;    if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr;  } else {    if (new_fp == nullptr) return nullptr;  // skip AddressIsReadable() below    // In the non-strict mode, allow discontiguous stack frames.    // (alternate-signal-stacks for example).    if (new_fp == old_fp) return nullptr;  }  if (new_fp_u & (sizeof(void *) - 1)) return nullptr;#ifdef __i386__  // On 32-bit machines, the stack pointer can be very close to  // 0xffffffff, so we explicitly check for a pointer into the  // last two pages in the address space  if (new_fp_u >= 0xffffe000) return nullptr;#endif#if !defined(_WIN32)  if (!STRICT_UNWINDING) {    // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test    // on AMD-based machines with VDSO-enabled kernels.    // Make an extra sanity check to insure new_fp is readable.    // Note: NextStackFrame<false>() is only called while the program    //       is already on its last leg, so it's ok to be slow here.    if (!absl::debug_internal::AddressIsReadable(new_fp)) {      return nullptr;    }  }#endif  return new_fp;}template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.ABSL_ATTRIBUTE_NOINLINEstatic int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,                      const void *ucp, int *min_dropped_frames) {  int n = 0;  void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));  while (fp && n < max_depth) {    if (*(fp + 1) == reinterpret_cast<void *>(0)) {      // In 64-bit code, we often see a frame that      // points to itself and has a return address of 0.      break;    }    void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp);    if (skip_count > 0) {      skip_count--;    } else {      result[n] = *(fp + 1);      if (IS_STACK_FRAMES) {        if (next_fp > fp) {          sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp;        } else {          // A frame-size of 0 is used to indicate unknown frame size.          sizes[n] = 0;        }      }      n++;    }    fp = next_fp;  }  if (min_dropped_frames != nullptr) {    // Implementation detail: we clamp the max of frames we are willing to    // count, so as not to spend too much time in the loop below.    const int kMaxUnwind = 1000;    int j = 0;    for (; fp != nullptr && j < kMaxUnwind; j++) {      fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp);    }    *min_dropped_frames = j;  }  return n;}#endif  // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
 |