| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 | 
							- // Copyright 2017 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //      http://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- //
 
- // -----------------------------------------------------------------------------
 
- // File: algorithm.h
 
- // -----------------------------------------------------------------------------
 
- //
 
- // This header file contains Google extensions to the standard <algorithm> C++
 
- // header.
 
- #ifndef ABSL_ALGORITHM_ALGORITHM_H_
 
- #define ABSL_ALGORITHM_ALGORITHM_H_
 
- #include <algorithm>
 
- #include <iterator>
 
- #include <type_traits>
 
- namespace absl {
 
- namespace algorithm_internal {
 
- // Performs comparisons with operator==, similar to C++14's `std::equal_to<>`.
 
- struct EqualTo {
 
-   template <typename T, typename U>
 
-   bool operator()(const T& a, const U& b) const {
 
-     return a == b;
 
-   }
 
- };
 
- template <typename InputIter1, typename InputIter2, typename Pred>
 
- bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
 
-                InputIter2 last2, Pred pred, std::input_iterator_tag,
 
-                std::input_iterator_tag) {
 
-   while (true) {
 
-     if (first1 == last1) return first2 == last2;
 
-     if (first2 == last2) return false;
 
-     if (!pred(*first1, *first2)) return false;
 
-     ++first1;
 
-     ++first2;
 
-   }
 
- }
 
- template <typename InputIter1, typename InputIter2, typename Pred>
 
- bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
 
-                InputIter2 last2, Pred&& pred, std::random_access_iterator_tag,
 
-                std::random_access_iterator_tag) {
 
-   return (last1 - first1 == last2 - first2) &&
 
-          std::equal(first1, last1, first2, std::forward<Pred>(pred));
 
- }
 
- // When we are using our own internal predicate that just applies operator==, we
 
- // forward to the non-predicate form of std::equal. This enables an optimization
 
- // in libstdc++ that can result in std::memcmp being used for integer types.
 
- template <typename InputIter1, typename InputIter2>
 
- bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
 
-                InputIter2 last2, algorithm_internal::EqualTo /* unused */,
 
-                std::random_access_iterator_tag,
 
-                std::random_access_iterator_tag) {
 
-   return (last1 - first1 == last2 - first2) &&
 
-          std::equal(first1, last1, first2);
 
- }
 
- template <typename It>
 
- It RotateImpl(It first, It middle, It last, std::true_type) {
 
-   return std::rotate(first, middle, last);
 
- }
 
- template <typename It>
 
- It RotateImpl(It first, It middle, It last, std::false_type) {
 
-   std::rotate(first, middle, last);
 
-   return std::next(first, std::distance(middle, last));
 
- }
 
- }  // namespace algorithm_internal
 
- // Compares the equality of two ranges specified by pairs of iterators, using
 
- // the given predicate, returning true iff for each corresponding iterator i1
 
- // and i2 in the first and second range respectively, pred(*i1, *i2) == true
 
- //
 
- // This comparison takes at most min(`last1` - `first1`, `last2` - `first2`)
 
- // invocations of the predicate. Additionally, if InputIter1 and InputIter2 are
 
- // both random-access iterators, and `last1` - `first1` != `last2` - `first2`,
 
- // then the predicate is never invoked and the function returns false.
 
- //
 
- // This is a C++11-compatible implementation of C++14 `std::equal`.  See
 
- // http://en.cppreference.com/w/cpp/algorithm/equal for more information.
 
- template <typename InputIter1, typename InputIter2, typename Pred>
 
- bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2,
 
-            InputIter2 last2, Pred&& pred) {
 
-   return algorithm_internal::EqualImpl(
 
-       first1, last1, first2, last2, std::forward<Pred>(pred),
 
-       typename std::iterator_traits<InputIter1>::iterator_category{},
 
-       typename std::iterator_traits<InputIter2>::iterator_category{});
 
- }
 
- // Performs comparison of two ranges specified by pairs of iterators using
 
- // operator==.
 
- template <typename InputIter1, typename InputIter2>
 
- bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2,
 
-            InputIter2 last2) {
 
-   return absl::equal(first1, last1, first2, last2,
 
-                      algorithm_internal::EqualTo{});
 
- }
 
- // Performs a linear search for `value` using the iterator `first` up to
 
- // but not including `last`, returning true if [`first`, `last`) contains an
 
- // element equal to `value`.
 
- //
 
- // A linear search is of O(n) complexity which is guaranteed to make at most
 
- // n = (`last` - `first`) comparisons. A linear search over short containers
 
- // may be faster than a binary search, even when the container is sorted.
 
- template <typename InputIterator, typename EqualityComparable>
 
- bool linear_search(InputIterator first, InputIterator last,
 
-                    const EqualityComparable& value) {
 
-   return std::find(first, last, value) != last;
 
- }
 
- // Performs a left rotation on a range of elements (`first`, `last`) such that
 
- // `middle` is now the first element. `rotate()` returns an iterator pointing to
 
- // the first element before rotation. This function is exactly the same as
 
- // `std::rotate`, but fixes a bug in gcc
 
- // <= 4.9 where `std::rotate` returns `void` instead of an iterator.
 
- //
 
- // The complexity of this algorithm is the same as that of `std::rotate`, but if
 
- // `ForwardIterator` is not a random-access iterator, then `absl::rotate`
 
- // performs an additional pass over the range to construct the return value.
 
- template <typename ForwardIterator>
 
- ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,
 
-                        ForwardIterator last) {
 
-   return algorithm_internal::RotateImpl(
 
-       first, middle, last,
 
-       std::is_same<decltype(std::rotate(first, middle, last)),
 
-                    ForwardIterator>());
 
- }
 
- }  // namespace absl
 
- #endif  // ABSL_ALGORITHM_ALGORITHM_H_
 
 
  |