| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// Tests for pointer utilities.#include "absl/memory/memory.h"#include <sys/types.h>#include <cstddef>#include <memory>#include <string>#include <type_traits>#include <utility>#include <vector>#include "gmock/gmock.h"#include "gtest/gtest.h"namespace {using ::testing::ElementsAre;using ::testing::Return;// This class creates observable behavior to verify that a destructor has// been called, via the instance_count variable.class DestructorVerifier { public:  DestructorVerifier() { ++instance_count_;  }  DestructorVerifier(const DestructorVerifier&) = delete;  DestructorVerifier& operator=(const DestructorVerifier&) = delete;  ~DestructorVerifier() {  --instance_count_; }  // The number of instances of this class currently active.  static int instance_count() { return instance_count_; } private:  // The number of instances of this class currently active.  static int instance_count_;};int DestructorVerifier::instance_count_ = 0;TEST(WrapUniqueTest, WrapUnique) {  // Test that the unique_ptr is constructed properly by verifying that the  // destructor for its payload gets called at the proper time.  {    auto dv = new DestructorVerifier;    EXPECT_EQ(1, DestructorVerifier::instance_count());    std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv);    EXPECT_EQ(1, DestructorVerifier::instance_count());  }  EXPECT_EQ(0, DestructorVerifier::instance_count());}TEST(MakeUniqueTest, Basic) {  std::unique_ptr<std::string> p = absl::make_unique<std::string>();  EXPECT_EQ("", *p);  p = absl::make_unique<std::string>("hi");  EXPECT_EQ("hi", *p);}// InitializationVerifier fills in a pattern when allocated so we can// distinguish between its default and value initialized states (without// accessing truly uninitialized memory).struct InitializationVerifier {  static constexpr int kDefaultScalar = 0x43;  static constexpr int kDefaultArray = 0x4B;  static void* operator new(size_t n) {    void* ret = ::operator new(n);    memset(ret, kDefaultScalar, n);    return ret;  }  static void* operator new[](size_t n) {    void* ret = ::operator new[](n);    memset(ret, kDefaultArray, n);    return ret;  }  int a;  int b;};TEST(Initialization, MakeUnique) {  auto p = absl::make_unique<InitializationVerifier>();  EXPECT_EQ(0, p->a);  EXPECT_EQ(0, p->b);}TEST(Initialization, MakeUniqueArray) {  auto p = absl::make_unique<InitializationVerifier[]>(2);  EXPECT_EQ(0, p[0].a);  EXPECT_EQ(0, p[0].b);  EXPECT_EQ(0, p[1].a);  EXPECT_EQ(0, p[1].b);}struct MoveOnly {  MoveOnly() = default;  explicit MoveOnly(int i1) : ip1{new int{i1}} {}  MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {}  std::unique_ptr<int> ip1;  std::unique_ptr<int> ip2;};struct AcceptMoveOnly {  explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {}  MoveOnly m_;};TEST(MakeUniqueTest, MoveOnlyTypeAndValue) {  using ExpectedType = std::unique_ptr<MoveOnly>;  {    auto p = absl::make_unique<MoveOnly>();    static_assert(std::is_same<decltype(p), ExpectedType>::value,                  "unexpected return type");    EXPECT_TRUE(!p->ip1);    EXPECT_TRUE(!p->ip2);  }  {    auto p = absl::make_unique<MoveOnly>(1);    static_assert(std::is_same<decltype(p), ExpectedType>::value,                  "unexpected return type");    EXPECT_TRUE(p->ip1 && *p->ip1 == 1);    EXPECT_TRUE(!p->ip2);  }  {    auto p = absl::make_unique<MoveOnly>(1, 2);    static_assert(std::is_same<decltype(p), ExpectedType>::value,                  "unexpected return type");    EXPECT_TRUE(p->ip1 && *p->ip1 == 1);    EXPECT_TRUE(p->ip2 && *p->ip2 == 2);  }}TEST(MakeUniqueTest, AcceptMoveOnly) {  auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly());  p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly()));}struct ArrayWatch {  void* operator new[](size_t n) {    allocs().push_back(n);    return ::operator new[](n);  }  void operator delete[](void* p) {    return ::operator delete[](p);  }  static std::vector<size_t>& allocs() {    static auto& v = *new std::vector<size_t>;    return v;  }};TEST(Make_UniqueTest, Array) {  // Ensure state is clean before we start so that these tests  // are order-agnostic.  ArrayWatch::allocs().clear();  auto p = absl::make_unique<ArrayWatch[]>(5);  static_assert(std::is_same<decltype(p),                             std::unique_ptr<ArrayWatch[]>>::value,                "unexpected return type");  EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch)));}TEST(Make_UniqueTest, NotAmbiguousWithStdMakeUnique) {  // Ensure that absl::make_unique is not ambiguous with std::make_unique.  // In C++14 mode, the below call to make_unique has both types as candidates.  struct TakesStdType {    explicit TakesStdType(const std::vector<int> &vec) {}  };  using absl::make_unique;  (void)make_unique<TakesStdType>(std::vector<int>());}#if 0// These tests shouldn't compile.TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) {  auto m = MoveOnly();  auto p = absl::make_unique<AcceptMoveOnly>(m);}TEST(MakeUniqueTestNC, KnownBoundArray) {  auto p = absl::make_unique<ArrayWatch[5]>();}#endifTEST(RawPtrTest, RawPointer) {  int i = 5;  EXPECT_EQ(&i, absl::RawPtr(&i));}TEST(RawPtrTest, SmartPointer) {  int* o = new int(5);  std::unique_ptr<int> p(o);  EXPECT_EQ(o, absl::RawPtr(p));}class IntPointerNonConstDeref { public:  explicit IntPointerNonConstDeref(int* p) : p_(p) {}  friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) {    return a.p_ != nullptr;  }  int& operator*() { return *p_; } private:  std::unique_ptr<int> p_;};TEST(RawPtrTest, SmartPointerNonConstDereference) {  int* o = new int(5);  IntPointerNonConstDeref p(o);  EXPECT_EQ(o, absl::RawPtr(p));}TEST(RawPtrTest, NullValuedRawPointer) {  int* p = nullptr;  EXPECT_EQ(nullptr, absl::RawPtr(p));}TEST(RawPtrTest, NullValuedSmartPointer) {  std::unique_ptr<int> p;  EXPECT_EQ(nullptr, absl::RawPtr(p));}TEST(RawPtrTest, Nullptr) {  auto p = absl::RawPtr(nullptr);  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));  EXPECT_EQ(nullptr, p);}TEST(RawPtrTest, Null) {  auto p = absl::RawPtr(nullptr);  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));  EXPECT_EQ(nullptr, p);}TEST(RawPtrTest, Zero) {  auto p = absl::RawPtr(nullptr);  EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));  EXPECT_EQ(nullptr, p);}TEST(ShareUniquePtrTest, Share) {  auto up = absl::make_unique<int>();  int* rp = up.get();  auto sp = absl::ShareUniquePtr(std::move(up));  EXPECT_EQ(sp.get(), rp);}TEST(ShareUniquePtrTest, ShareNull) {  struct NeverDie {    using pointer = void*;    void operator()(pointer) {      ASSERT_TRUE(false) << "Deleter should not have been called.";    }  };  std::unique_ptr<void, NeverDie> up;  auto sp = absl::ShareUniquePtr(std::move(up));}TEST(WeakenPtrTest, Weak) {  auto sp = std::make_shared<int>();  auto wp = absl::WeakenPtr(sp);  EXPECT_EQ(sp.get(), wp.lock().get());  sp.reset();  EXPECT_TRUE(wp.expired());}// Should not compile./*TEST(RawPtrTest, NotAPointer) {  absl::RawPtr(1.5);}*/template <typename T>struct SmartPointer {  using difference_type = char;};struct PointerWith {  using element_type = int32_t;  using difference_type = int16_t;  template <typename U>  using rebind = SmartPointer<U>;  static PointerWith pointer_to(      element_type& r) {  // NOLINT(runtime/references)    return PointerWith{&r};  }  element_type* ptr;};template <typename... Args>struct PointerWithout {};TEST(PointerTraits, Types) {  using TraitsWith = absl::pointer_traits<PointerWith>;  EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value));  EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value));  EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value));  EXPECT_TRUE((      std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value));  using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>;  EXPECT_TRUE((std::is_same<TraitsWithout::pointer,                            PointerWithout<double, int>>::value));  EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value));  EXPECT_TRUE(      (std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value));  EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>,                            PointerWithout<int64_t, int>>::value));  using TraitsRawPtr = absl::pointer_traits<char*>;  EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value));  EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value));  EXPECT_TRUE(      (std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value));  EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value));}TEST(PointerTraits, Functions) {  int i;  EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr);  EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i));}TEST(AllocatorTraits, Typedefs) {  struct A {    struct value_type {};  };  EXPECT_TRUE((      std::is_same<A,                   typename absl::allocator_traits<A>::allocator_type>::value));  EXPECT_TRUE(      (std::is_same<A::value_type,                    typename absl::allocator_traits<A>::value_type>::value));  struct X {};  struct HasPointer {    using value_type = X;    using pointer = SmartPointer<X>;  };  EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits<                                                 HasPointer>::pointer>::value));  EXPECT_TRUE(      (std::is_same<A::value_type*,                    typename absl::allocator_traits<A>::pointer>::value));  EXPECT_TRUE(      (std::is_same<          SmartPointer<const X>,          typename absl::allocator_traits<HasPointer>::const_pointer>::value));  EXPECT_TRUE(      (std::is_same<const A::value_type*,                    typename absl::allocator_traits<A>::const_pointer>::value));  struct HasVoidPointer {    using value_type = X;    struct void_pointer {};  };  EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer,                            typename absl::allocator_traits<                                HasVoidPointer>::void_pointer>::value));  EXPECT_TRUE(      (std::is_same<SmartPointer<void>, typename absl::allocator_traits<                                            HasPointer>::void_pointer>::value));  struct HasConstVoidPointer {    using value_type = X;    struct const_void_pointer {};  };  EXPECT_TRUE(      (std::is_same<HasConstVoidPointer::const_void_pointer,                    typename absl::allocator_traits<                        HasConstVoidPointer>::const_void_pointer>::value));  EXPECT_TRUE((std::is_same<SmartPointer<const void>,                            typename absl::allocator_traits<                                HasPointer>::const_void_pointer>::value));  struct HasDifferenceType {    using value_type = X;    using difference_type = int;  };  EXPECT_TRUE(      (std::is_same<int, typename absl::allocator_traits<                             HasDifferenceType>::difference_type>::value));  EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits<                                      HasPointer>::difference_type>::value));  struct HasSizeType {    using value_type = X;    using size_type = unsigned int;  };  EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits<                                              HasSizeType>::size_type>::value));  EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits<                                               HasPointer>::size_type>::value));  struct HasPropagateOnCopy {    using value_type = X;    struct propagate_on_container_copy_assignment {};  };  EXPECT_TRUE(      (std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment,                    typename absl::allocator_traits<HasPropagateOnCopy>::                        propagate_on_container_copy_assignment>::value));  EXPECT_TRUE(      (std::is_same<std::false_type,                    typename absl::allocator_traits<                        A>::propagate_on_container_copy_assignment>::value));  struct HasPropagateOnMove {    using value_type = X;    struct propagate_on_container_move_assignment {};  };  EXPECT_TRUE(      (std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment,                    typename absl::allocator_traits<HasPropagateOnMove>::                        propagate_on_container_move_assignment>::value));  EXPECT_TRUE(      (std::is_same<std::false_type,                    typename absl::allocator_traits<                        A>::propagate_on_container_move_assignment>::value));  struct HasPropagateOnSwap {    using value_type = X;    struct propagate_on_container_swap {};  };  EXPECT_TRUE(      (std::is_same<HasPropagateOnSwap::propagate_on_container_swap,                    typename absl::allocator_traits<HasPropagateOnSwap>::                        propagate_on_container_swap>::value));  EXPECT_TRUE(      (std::is_same<std::false_type, typename absl::allocator_traits<A>::                                         propagate_on_container_swap>::value));  struct HasIsAlwaysEqual {    using value_type = X;    struct is_always_equal {};  };  EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal,                            typename absl::allocator_traits<                                HasIsAlwaysEqual>::is_always_equal>::value));  EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits<                                                A>::is_always_equal>::value));  struct NonEmpty {    using value_type = X;    int i;  };  EXPECT_TRUE(      (std::is_same<std::false_type,                    absl::allocator_traits<NonEmpty>::is_always_equal>::value));}template <typename T>struct AllocWithPrivateInheritance : private std::allocator<T> {  using value_type = T;};TEST(AllocatorTraits, RebindWithPrivateInheritance) {  // Regression test for some versions of gcc that do not like the sfinae we  // used in combination with private inheritance.  EXPECT_TRUE(      (std::is_same<AllocWithPrivateInheritance<int>,                    absl::allocator_traits<AllocWithPrivateInheritance<char>>::                        rebind_alloc<int>>::value));}template <typename T>struct Rebound {};struct AllocWithRebind {  using value_type = int;  template <typename T>  struct rebind {    using other = Rebound<T>;  };};template <typename T, typename U>struct AllocWithoutRebind {  using value_type = int;};TEST(AllocatorTraits, Rebind) {  EXPECT_TRUE(      (std::is_same<Rebound<int>,                    typename absl::allocator_traits<                        AllocWithRebind>::template rebind_alloc<int>>::value));  EXPECT_TRUE(      (std::is_same<absl::allocator_traits<Rebound<int>>,                    typename absl::allocator_traits<                        AllocWithRebind>::template rebind_traits<int>>::value));  EXPECT_TRUE(      (std::is_same<AllocWithoutRebind<double, char>,                    typename absl::allocator_traits<AllocWithoutRebind<                        int, char>>::template rebind_alloc<double>>::value));  EXPECT_TRUE(      (std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>,                    typename absl::allocator_traits<AllocWithoutRebind<                        int, char>>::template rebind_traits<double>>::value));}struct TestValue {  TestValue() {}  explicit TestValue(int* trace) : trace(trace) { ++*trace; }  ~TestValue() {    if (trace) --*trace;  }  int* trace = nullptr;};struct MinimalMockAllocator {  MinimalMockAllocator() : value(0) {}  explicit MinimalMockAllocator(int value) : value(value) {}  MinimalMockAllocator(const MinimalMockAllocator& other)      : value(other.value) {}  using value_type = TestValue;  MOCK_METHOD1(allocate, value_type*(size_t));  MOCK_METHOD2(deallocate, void(value_type*, size_t));  int value;};TEST(AllocatorTraits, FunctionsMinimal) {  int trace = 0;  int hint;  TestValue x(&trace);  MinimalMockAllocator mock;  using Traits = absl::allocator_traits<MinimalMockAllocator>;  EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));  EXPECT_CALL(mock, deallocate(&x, 7));  EXPECT_EQ(&x, Traits::allocate(mock, 7));  Traits::allocate(mock, 7, static_cast<const void*>(&hint));  EXPECT_EQ(&x, Traits::allocate(mock, 7, static_cast<const void*>(&hint)));  Traits::deallocate(mock, &x, 7);  EXPECT_EQ(1, trace);  Traits::construct(mock, &x, &trace);  EXPECT_EQ(2, trace);  Traits::destroy(mock, &x);  EXPECT_EQ(1, trace);  EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue),            Traits::max_size(mock));  EXPECT_EQ(0, mock.value);  EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value);}struct FullMockAllocator {  FullMockAllocator() : value(0) {}  explicit FullMockAllocator(int value) : value(value) {}  FullMockAllocator(const FullMockAllocator& other) : value(other.value) {}  using value_type = TestValue;  MOCK_METHOD1(allocate, value_type*(size_t));  MOCK_METHOD2(allocate, value_type*(size_t, const void*));  MOCK_METHOD2(construct, void(value_type*, int*));  MOCK_METHOD1(destroy, void(value_type*));  MOCK_CONST_METHOD0(max_size, size_t());  MOCK_CONST_METHOD0(select_on_container_copy_construction,                     FullMockAllocator());  int value;};TEST(AllocatorTraits, FunctionsFull) {  int trace = 0;  int hint;  TestValue x(&trace), y;  FullMockAllocator mock;  using Traits = absl::allocator_traits<FullMockAllocator>;  EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));  EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y));  EXPECT_CALL(mock, construct(&x, &trace));  EXPECT_CALL(mock, destroy(&x));  EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17));  EXPECT_CALL(mock, select_on_container_copy_construction())      .WillRepeatedly(Return(FullMockAllocator(23)));  EXPECT_EQ(&x, Traits::allocate(mock, 7));  EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint)));  EXPECT_EQ(1, trace);  Traits::construct(mock, &x, &trace);  EXPECT_EQ(1, trace);  Traits::destroy(mock, &x);  EXPECT_EQ(1, trace);  EXPECT_EQ(17, Traits::max_size(mock));  EXPECT_EQ(0, mock.value);  EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value);}TEST(AllocatorNoThrowTest, DefaultAllocator) {#if ABSL_ALLOCATOR_NOTHROW  EXPECT_TRUE(absl::default_allocator_is_nothrow::value);#else  EXPECT_FALSE(absl::default_allocator_is_nothrow::value);#endif}TEST(AllocatorNoThrowTest, StdAllocator) {#if ABSL_ALLOCATOR_NOTHROW  EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value);#else  EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value);#endif}TEST(AllocatorNoThrowTest, CustomAllocator) {  struct NoThrowAllocator {    using is_nothrow = std::true_type;  };  struct CanThrowAllocator {    using is_nothrow = std::false_type;  };  struct UnspecifiedAllocator {  };  EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value);  EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value);  EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value);}}  // namespace
 |