| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/random/uniform_real_distribution.h"#include <cmath>#include <cstdint>#include <iterator>#include <random>#include <sstream>#include <string>#include <vector>#include "gmock/gmock.h"#include "gtest/gtest.h"#include "absl/base/internal/raw_logging.h"#include "absl/random/internal/chi_square.h"#include "absl/random/internal/distribution_test_util.h"#include "absl/random/internal/pcg_engine.h"#include "absl/random/internal/sequence_urbg.h"#include "absl/random/random.h"#include "absl/strings/str_cat.h"// NOTES:// * Some documentation on generating random real values suggests that//   it is possible to use std::nextafter(b, DBL_MAX) to generate a value on//   the closed range [a, b]. Unfortunately, that technique is not universally//   reliable due to floating point quantization.//// * absl::uniform_real_distribution<float> generates between 2^28 and 2^29//   distinct floating point values in the range [0, 1).//// * absl::uniform_real_distribution<float> generates at least 2^23 distinct//   floating point values in the range [1, 2). This should be the same as//   any other range covered by a single exponent in IEEE 754.//// * absl::uniform_real_distribution<double> generates more than 2^52 distinct//   values in the range [0, 1), and should generate at least 2^52 distinct//   values in the range of [1, 2).//namespace {template <typename RealType>class UniformRealDistributionTest : public ::testing::Test {};using RealTypes = ::testing::Types<float, double, long double>;TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes);TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) {  using param_type =      typename absl::uniform_real_distribution<TypeParam>::param_type;  constexpr const TypeParam a{1152921504606846976};  constexpr int kCount = 1000;  absl::InsecureBitGen gen;  for (const auto& param : {           param_type(),           param_type(TypeParam(2.0), TypeParam(2.0)),  // Same           param_type(TypeParam(-0.1), TypeParam(0.1)),           param_type(TypeParam(0.05), TypeParam(0.12)),           param_type(TypeParam(-0.05), TypeParam(0.13)),           param_type(TypeParam(-0.05), TypeParam(-0.02)),           // double range = 0           // 2^60 , 2^60 + 2^6           param_type(a, TypeParam(1152921504606847040)),           // 2^60 , 2^60 + 2^7           param_type(a, TypeParam(1152921504606847104)),           // double range = 2^8           // 2^60 , 2^60 + 2^8           param_type(a, TypeParam(1152921504606847232)),           // float range = 0           // 2^60 , 2^60 + 2^36           param_type(a, TypeParam(1152921573326323712)),           // 2^60 , 2^60 + 2^37           param_type(a, TypeParam(1152921642045800448)),           // float range = 2^38           // 2^60 , 2^60 + 2^38           param_type(a, TypeParam(1152921779484753920)),           // Limits           param_type(0, std::numeric_limits<TypeParam>::max()),           param_type(std::numeric_limits<TypeParam>::lowest(), 0),           param_type(0, std::numeric_limits<TypeParam>::epsilon()),           param_type(-std::numeric_limits<TypeParam>::epsilon(),                      std::numeric_limits<TypeParam>::epsilon()),           param_type(std::numeric_limits<TypeParam>::epsilon(),                      2 * std::numeric_limits<TypeParam>::epsilon()),       }) {    // Validate parameters.    const auto a = param.a();    const auto b = param.b();    absl::uniform_real_distribution<TypeParam> before(a, b);    EXPECT_EQ(before.a(), param.a());    EXPECT_EQ(before.b(), param.b());    {      absl::uniform_real_distribution<TypeParam> via_param(param);      EXPECT_EQ(via_param, before);    }    std::stringstream ss;    ss << before;    absl::uniform_real_distribution<TypeParam> after(TypeParam(1.0),                                                     TypeParam(3.1));    EXPECT_NE(before.a(), after.a());    EXPECT_NE(before.b(), after.b());    EXPECT_NE(before.param(), after.param());    EXPECT_NE(before, after);    ss >> after;    EXPECT_EQ(before.a(), after.a());    EXPECT_EQ(before.b(), after.b());    EXPECT_EQ(before.param(), after.param());    EXPECT_EQ(before, after);    // Smoke test.    auto sample_min = after.max();    auto sample_max = after.min();    for (int i = 0; i < kCount; i++) {      auto sample = after(gen);      // Failure here indicates a bug in uniform_real_distribution::operator(),      // or bad parameters--range too large, etc.      if (after.min() == after.max()) {        EXPECT_EQ(sample, after.min());      } else {        EXPECT_GE(sample, after.min());        EXPECT_LT(sample, after.max());      }      if (sample > sample_max) {        sample_max = sample;      }      if (sample < sample_min) {        sample_min = sample;      }    }    if (!std::is_same<TypeParam, long double>::value) {      // static_cast<double>(long double) can overflow.      std::string msg = absl::StrCat("Range: ", static_cast<double>(sample_min),                                     ", ", static_cast<double>(sample_max));      ABSL_RAW_LOG(INFO, "%s", msg.c_str());    }  }}#ifdef _MSC_VER#pragma warning(push)#pragma warning(disable:4756)  // Constant arithmetic overflow.#endifTYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) {#if GTEST_HAS_DEATH_TEST  // Hi < Lo  EXPECT_DEBUG_DEATH(      { absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); }, "");  // Hi - Lo > numeric_limits<>::max()  EXPECT_DEBUG_DEATH(      {        absl::uniform_real_distribution<TypeParam> dist(            std::numeric_limits<TypeParam>::lowest(),            std::numeric_limits<TypeParam>::max());      },      "");#endif  // GTEST_HAS_DEATH_TEST#if defined(NDEBUG)  // opt-mode, for invalid parameters, will generate a garbage value,  // but should not enter an infinite loop.  absl::InsecureBitGen gen;  {    absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0);    auto x = dist(gen);    EXPECT_FALSE(std::isnan(x)) << x;  }  {    absl::uniform_real_distribution<TypeParam> dist(        std::numeric_limits<TypeParam>::lowest(),        std::numeric_limits<TypeParam>::max());    auto x = dist(gen);    // Infinite result.    EXPECT_FALSE(std::isfinite(x)) << x;  }#endif  // NDEBUG}#ifdef _MSC_VER#pragma warning(pop)  // warning(disable:4756)#endifTYPED_TEST(UniformRealDistributionTest, TestMoments) {  constexpr int kSize = 1000000;  std::vector<double> values(kSize);  // We use a fixed bit generator for distribution accuracy tests.  This allows  // these tests to be deterministic, while still testing the qualify of the  // implementation.  absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};  absl::uniform_real_distribution<TypeParam> dist;  for (int i = 0; i < kSize; i++) {    values[i] = dist(rng);  }  const auto moments =      absl::random_internal::ComputeDistributionMoments(values);  EXPECT_NEAR(0.5, moments.mean, 0.01);  EXPECT_NEAR(1 / 12.0, moments.variance, 0.015);  EXPECT_NEAR(0.0, moments.skewness, 0.02);  EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015);}TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) {  using absl::random_internal::kChiSquared;  using param_type =      typename absl::uniform_real_distribution<TypeParam>::param_type;  constexpr size_t kTrials = 100000;  constexpr int kBuckets = 50;  constexpr double kExpected =      static_cast<double>(kTrials) / static_cast<double>(kBuckets);  // 1-in-100000 threshold, but remember, there are about 8 tests  // in this file. And the test could fail for other reasons.  // Empirically validated with --runs_per_test=10000.  const int kThreshold =      absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999);  // We use a fixed bit generator for distribution accuracy tests.  This allows  // these tests to be deterministic, while still testing the qualify of the  // implementation.  absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};  for (const auto& param : {param_type(0, 1), param_type(5, 12),                            param_type(-5, 13), param_type(-5, -2)}) {    const double min_val = param.a();    const double max_val = param.b();    const double factor = kBuckets / (max_val - min_val);    std::vector<int32_t> counts(kBuckets, 0);    absl::uniform_real_distribution<TypeParam> dist(param);    for (size_t i = 0; i < kTrials; i++) {      auto x = dist(rng);      auto bucket = static_cast<size_t>((x - min_val) * factor);      counts[bucket]++;    }    double chi_square = absl::random_internal::ChiSquareWithExpected(        std::begin(counts), std::end(counts), kExpected);    if (chi_square > kThreshold) {      double p_value =          absl::random_internal::ChiSquarePValue(chi_square, kBuckets);      // Chi-squared test failed. Output does not appear to be uniform.      std::string msg;      for (const auto& a : counts) {        absl::StrAppend(&msg, a, "\n");      }      absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");      absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",                      kThreshold);      ABSL_RAW_LOG(INFO, "%s", msg.c_str());      FAIL() << msg;    }  }}TYPED_TEST(UniformRealDistributionTest, StabilityTest) {  // absl::uniform_real_distribution stability relies only on  // random_internal::RandU64ToDouble and random_internal::RandU64ToFloat.  absl::random_internal::sequence_urbg urbg(      {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});  std::vector<int> output(12);  absl::uniform_real_distribution<TypeParam> dist;  std::generate(std::begin(output), std::end(output), [&] {    return static_cast<int>(TypeParam(1000000) * dist(urbg));  });  EXPECT_THAT(      output,  //      testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251,                           77341, 12527, 708791, 834451, 932808));}TEST(UniformRealDistributionTest, AlgorithmBounds) {  absl::uniform_real_distribution<double> dist;  {    // This returns the smallest value >0 from absl::uniform_real_distribution.    absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});    double a = dist(urbg);    EXPECT_EQ(a, 5.42101086242752217004e-20);  }  {    // This returns a value very near 0.5 from absl::uniform_real_distribution.    absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});    double a = dist(urbg);    EXPECT_EQ(a, 0.499999999999999944489);  }  {    // This returns a value very near 0.5 from absl::uniform_real_distribution.    absl::random_internal::sequence_urbg urbg({0x8000000000000000ull});    double a = dist(urbg);    EXPECT_EQ(a, 0.5);  }  {    // This returns the largest value <1 from absl::uniform_real_distribution.    absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull});    double a = dist(urbg);    EXPECT_EQ(a, 0.999999999999999888978);  }  {    // This *ALSO* returns the largest value <1.    absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});    double a = dist(urbg);    EXPECT_EQ(a, 0.999999999999999888978);  }}}  // namespace
 |