| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/numeric/int128.h"#include <algorithm>#include <limits>#include <random>#include <type_traits>#include <utility>#include <vector>#include "gtest/gtest.h"#include "absl/base/internal/cycleclock.h"#include "absl/hash/hash_testing.h"#include "absl/meta/type_traits.h"#if defined(_MSC_VER) && _MSC_VER == 1900// Disable "unary minus operator applied to unsigned type" warnings in Microsoft// Visual C++ 14 (2015).#pragma warning(disable:4146)#endifnamespace {template <typename T>class Uint128IntegerTraitsTest : public ::testing::Test {};typedef ::testing::Types<bool, char, signed char, unsigned char, char16_t,                         char32_t, wchar_t,                         short,           // NOLINT(runtime/int)                         unsigned short,  // NOLINT(runtime/int)                         int, unsigned int,                         long,                // NOLINT(runtime/int)                         unsigned long,       // NOLINT(runtime/int)                         long long,           // NOLINT(runtime/int)                         unsigned long long>  // NOLINT(runtime/int)    IntegerTypes;template <typename T>class Uint128FloatTraitsTest : public ::testing::Test {};typedef ::testing::Types<float, double, long double> FloatingPointTypes;TYPED_TEST_SUITE(Uint128IntegerTraitsTest, IntegerTypes);TYPED_TEST(Uint128IntegerTraitsTest, ConstructAssignTest) {  static_assert(std::is_constructible<absl::uint128, TypeParam>::value,                "absl::uint128 must be constructible from TypeParam");  static_assert(std::is_assignable<absl::uint128&, TypeParam>::value,                "absl::uint128 must be assignable from TypeParam");  static_assert(!std::is_assignable<TypeParam&, absl::uint128>::value,                "TypeParam must not be assignable from absl::uint128");}TYPED_TEST_SUITE(Uint128FloatTraitsTest, FloatingPointTypes);TYPED_TEST(Uint128FloatTraitsTest, ConstructAssignTest) {  static_assert(std::is_constructible<absl::uint128, TypeParam>::value,                "absl::uint128 must be constructible from TypeParam");  static_assert(!std::is_assignable<absl::uint128&, TypeParam>::value,                "absl::uint128 must not be assignable from TypeParam");  static_assert(!std::is_assignable<TypeParam&, absl::uint128>::value,                "TypeParam must not be assignable from absl::uint128");}#ifdef ABSL_HAVE_INTRINSIC_INT128// These type traits done separately as TYPED_TEST requires typeinfo, and not// all platforms have this for __int128 even though they define the type.TEST(Uint128, IntrinsicTypeTraitsTest) {  static_assert(std::is_constructible<absl::uint128, __int128>::value,                "absl::uint128 must be constructible from __int128");  static_assert(std::is_assignable<absl::uint128&, __int128>::value,                "absl::uint128 must be assignable from __int128");  static_assert(!std::is_assignable<__int128&, absl::uint128>::value,                "__int128 must not be assignable from absl::uint128");  static_assert(std::is_constructible<absl::uint128, unsigned __int128>::value,                "absl::uint128 must be constructible from unsigned __int128");  static_assert(std::is_assignable<absl::uint128&, unsigned __int128>::value,                "absl::uint128 must be assignable from unsigned __int128");  static_assert(!std::is_assignable<unsigned __int128&, absl::uint128>::value,                "unsigned __int128 must not be assignable from absl::uint128");}#endif  // ABSL_HAVE_INTRINSIC_INT128TEST(Uint128, TrivialTraitsTest) {  static_assert(absl::is_trivially_default_constructible<absl::uint128>::value,                "");  static_assert(absl::is_trivially_copy_constructible<absl::uint128>::value,                "");  static_assert(absl::is_trivially_copy_assignable<absl::uint128>::value, "");  static_assert(std::is_trivially_destructible<absl::uint128>::value, "");}TEST(Uint128, AllTests) {  absl::uint128 zero = 0;  absl::uint128 one = 1;  absl::uint128 one_2arg = absl::MakeUint128(0, 1);  absl::uint128 two = 2;  absl::uint128 three = 3;  absl::uint128 big = absl::MakeUint128(2000, 2);  absl::uint128 big_minus_one = absl::MakeUint128(2000, 1);  absl::uint128 bigger = absl::MakeUint128(2001, 1);  absl::uint128 biggest = absl::Uint128Max();  absl::uint128 high_low = absl::MakeUint128(1, 0);  absl::uint128 low_high =      absl::MakeUint128(0, std::numeric_limits<uint64_t>::max());  EXPECT_LT(one, two);  EXPECT_GT(two, one);  EXPECT_LT(one, big);  EXPECT_LT(one, big);  EXPECT_EQ(one, one_2arg);  EXPECT_NE(one, two);  EXPECT_GT(big, one);  EXPECT_GE(big, two);  EXPECT_GE(big, big_minus_one);  EXPECT_GT(big, big_minus_one);  EXPECT_LT(big_minus_one, big);  EXPECT_LE(big_minus_one, big);  EXPECT_NE(big_minus_one, big);  EXPECT_LT(big, biggest);  EXPECT_LE(big, biggest);  EXPECT_GT(biggest, big);  EXPECT_GE(biggest, big);  EXPECT_EQ(big, ~~big);  EXPECT_EQ(one, one | one);  EXPECT_EQ(big, big | big);  EXPECT_EQ(one, one | zero);  EXPECT_EQ(one, one & one);  EXPECT_EQ(big, big & big);  EXPECT_EQ(zero, one & zero);  EXPECT_EQ(zero, big & ~big);  EXPECT_EQ(zero, one ^ one);  EXPECT_EQ(zero, big ^ big);  EXPECT_EQ(one, one ^ zero);  // Shift operators.  EXPECT_EQ(big, big << 0);  EXPECT_EQ(big, big >> 0);  EXPECT_GT(big << 1, big);  EXPECT_LT(big >> 1, big);  EXPECT_EQ(big, (big << 10) >> 10);  EXPECT_EQ(big, (big >> 1) << 1);  EXPECT_EQ(one, (one << 80) >> 80);  EXPECT_EQ(zero, (one >> 80) << 80);  // Shift assignments.  absl::uint128 big_copy = big;  EXPECT_EQ(big << 0, big_copy <<= 0);  big_copy = big;  EXPECT_EQ(big >> 0, big_copy >>= 0);  big_copy = big;  EXPECT_EQ(big << 1, big_copy <<= 1);  big_copy = big;  EXPECT_EQ(big >> 1, big_copy >>= 1);  big_copy = big;  EXPECT_EQ(big << 10, big_copy <<= 10);  big_copy = big;  EXPECT_EQ(big >> 10, big_copy >>= 10);  big_copy = big;  EXPECT_EQ(big << 64, big_copy <<= 64);  big_copy = big;  EXPECT_EQ(big >> 64, big_copy >>= 64);  big_copy = big;  EXPECT_EQ(big << 73, big_copy <<= 73);  big_copy = big;  EXPECT_EQ(big >> 73, big_copy >>= 73);  EXPECT_EQ(absl::Uint128High64(biggest), std::numeric_limits<uint64_t>::max());  EXPECT_EQ(absl::Uint128Low64(biggest), std::numeric_limits<uint64_t>::max());  EXPECT_EQ(zero + one, one);  EXPECT_EQ(one + one, two);  EXPECT_EQ(big_minus_one + one, big);  EXPECT_EQ(one - one, zero);  EXPECT_EQ(one - zero, one);  EXPECT_EQ(zero - one, biggest);  EXPECT_EQ(big - big, zero);  EXPECT_EQ(big - one, big_minus_one);  EXPECT_EQ(big + std::numeric_limits<uint64_t>::max(), bigger);  EXPECT_EQ(biggest + 1, zero);  EXPECT_EQ(zero - 1, biggest);  EXPECT_EQ(high_low - one, low_high);  EXPECT_EQ(low_high + one, high_low);  EXPECT_EQ(absl::Uint128High64((absl::uint128(1) << 64) - 1), 0);  EXPECT_EQ(absl::Uint128Low64((absl::uint128(1) << 64) - 1),            std::numeric_limits<uint64_t>::max());  EXPECT_TRUE(!!one);  EXPECT_TRUE(!!high_low);  EXPECT_FALSE(!!zero);  EXPECT_FALSE(!one);  EXPECT_FALSE(!high_low);  EXPECT_TRUE(!zero);  EXPECT_TRUE(zero == 0);       // NOLINT(readability/check)  EXPECT_FALSE(zero != 0);      // NOLINT(readability/check)  EXPECT_FALSE(one == 0);       // NOLINT(readability/check)  EXPECT_TRUE(one != 0);        // NOLINT(readability/check)  EXPECT_FALSE(high_low == 0);  // NOLINT(readability/check)  EXPECT_TRUE(high_low != 0);   // NOLINT(readability/check)  absl::uint128 test = zero;  EXPECT_EQ(++test, one);  EXPECT_EQ(test, one);  EXPECT_EQ(test++, one);  EXPECT_EQ(test, two);  EXPECT_EQ(test -= 2, zero);  EXPECT_EQ(test, zero);  EXPECT_EQ(test += 2, two);  EXPECT_EQ(test, two);  EXPECT_EQ(--test, one);  EXPECT_EQ(test, one);  EXPECT_EQ(test--, one);  EXPECT_EQ(test, zero);  EXPECT_EQ(test |= three, three);  EXPECT_EQ(test &= one, one);  EXPECT_EQ(test ^= three, two);  EXPECT_EQ(test >>= 1, one);  EXPECT_EQ(test <<= 1, two);  EXPECT_EQ(big, -(-big));  EXPECT_EQ(two, -((-one) - 1));  EXPECT_EQ(absl::Uint128Max(), -one);  EXPECT_EQ(zero, -zero);  EXPECT_EQ(absl::Uint128Max(), absl::kuint128max);}TEST(Uint128, ConversionTests) {  EXPECT_TRUE(absl::MakeUint128(1, 0));#ifdef ABSL_HAVE_INTRINSIC_INT128  unsigned __int128 intrinsic =      (static_cast<unsigned __int128>(0x3a5b76c209de76f6) << 64) +      0x1f25e1d63a2b46c5;  absl::uint128 custom =      absl::MakeUint128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5);  EXPECT_EQ(custom, absl::uint128(intrinsic));  EXPECT_EQ(custom, absl::uint128(static_cast<__int128>(intrinsic)));  EXPECT_EQ(intrinsic, static_cast<unsigned __int128>(custom));  EXPECT_EQ(intrinsic, static_cast<__int128>(custom));#endif  // ABSL_HAVE_INTRINSIC_INT128  // verify that an integer greater than 2**64 that can be stored precisely  // inside a double is converted to a absl::uint128 without loss of  // information.  double precise_double = 0x530e * std::pow(2.0, 64.0) + 0xda74000000000000;  absl::uint128 from_precise_double(precise_double);  absl::uint128 from_precise_ints =      absl::MakeUint128(0x530e, 0xda74000000000000);  EXPECT_EQ(from_precise_double, from_precise_ints);  EXPECT_DOUBLE_EQ(static_cast<double>(from_precise_ints), precise_double);  double approx_double = 0xffffeeeeddddcccc * std::pow(2.0, 64.0) +                         0xbbbbaaaa99998888;  absl::uint128 from_approx_double(approx_double);  EXPECT_DOUBLE_EQ(static_cast<double>(from_approx_double), approx_double);  double round_to_zero = 0.7;  double round_to_five = 5.8;  double round_to_nine = 9.3;  EXPECT_EQ(static_cast<absl::uint128>(round_to_zero), 0);  EXPECT_EQ(static_cast<absl::uint128>(round_to_five), 5);  EXPECT_EQ(static_cast<absl::uint128>(round_to_nine), 9);  absl::uint128 highest_precision_in_long_double =      ~absl::uint128{} >> (128 - std::numeric_limits<long double>::digits);  EXPECT_EQ(highest_precision_in_long_double,            static_cast<absl::uint128>(                static_cast<long double>(highest_precision_in_long_double)));  // Apply a mask just to make sure all the bits are the right place.  const absl::uint128 arbitrary_mask =      absl::MakeUint128(0xa29f622677ded751, 0xf8ca66add076f468);  EXPECT_EQ(highest_precision_in_long_double & arbitrary_mask,            static_cast<absl::uint128>(static_cast<long double>(                highest_precision_in_long_double & arbitrary_mask)));  EXPECT_EQ(static_cast<absl::uint128>(-0.1L), 0);}TEST(Uint128, OperatorAssignReturnRef) {  absl::uint128 v(1);  (v += 4) -= 3;  EXPECT_EQ(2, v);}TEST(Uint128, Multiply) {  absl::uint128 a, b, c;  // Zero test.  a = 0;  b = 0;  c = a * b;  EXPECT_EQ(0, c);  // Max carries.  a = absl::uint128(0) - 1;  b = absl::uint128(0) - 1;  c = a * b;  EXPECT_EQ(1, c);  // Self-operation with max carries.  c = absl::uint128(0) - 1;  c *= c;  EXPECT_EQ(1, c);  // 1-bit x 1-bit.  for (int i = 0; i < 64; ++i) {    for (int j = 0; j < 64; ++j) {      a = absl::uint128(1) << i;      b = absl::uint128(1) << j;      c = a * b;      EXPECT_EQ(absl::uint128(1) << (i + j), c);    }  }  // Verified with dc.  a = absl::MakeUint128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888);  b = absl::MakeUint128(0x7777666655554444, 0x3333222211110000);  c = a * b;  EXPECT_EQ(absl::MakeUint128(0x530EDA741C71D4C3, 0xBF25975319080000), c);  EXPECT_EQ(0, c - b * a);  EXPECT_EQ(a*a - b*b, (a+b) * (a-b));  // Verified with dc.  a = absl::MakeUint128(0x0123456789abcdef, 0xfedcba9876543210);  b = absl::MakeUint128(0x02468ace13579bdf, 0xfdb97531eca86420);  c = a * b;  EXPECT_EQ(absl::MakeUint128(0x97a87f4f261ba3f2, 0x342d0bbf48948200), c);  EXPECT_EQ(0, c - b * a);  EXPECT_EQ(a*a - b*b, (a+b) * (a-b));}TEST(Uint128, AliasTests) {  absl::uint128 x1 = absl::MakeUint128(1, 2);  absl::uint128 x2 = absl::MakeUint128(2, 4);  x1 += x1;  EXPECT_EQ(x2, x1);  absl::uint128 x3 = absl::MakeUint128(1, static_cast<uint64_t>(1) << 63);  absl::uint128 x4 = absl::MakeUint128(3, 0);  x3 += x3;  EXPECT_EQ(x4, x3);}TEST(Uint128, DivideAndMod) {  using std::swap;  // a := q * b + r  absl::uint128 a, b, q, r;  // Zero test.  a = 0;  b = 123;  q = a / b;  r = a % b;  EXPECT_EQ(0, q);  EXPECT_EQ(0, r);  a = absl::MakeUint128(0x530eda741c71d4c3, 0xbf25975319080000);  q = absl::MakeUint128(0x4de2cab081, 0x14c34ab4676e4bab);  b = absl::uint128(0x1110001);  r = absl::uint128(0x3eb455);  ASSERT_EQ(a, q * b + r);  // Sanity-check.  absl::uint128 result_q, result_r;  result_q = a / b;  result_r = a % b;  EXPECT_EQ(q, result_q);  EXPECT_EQ(r, result_r);  // Try the other way around.  swap(q, b);  result_q = a / b;  result_r = a % b;  EXPECT_EQ(q, result_q);  EXPECT_EQ(r, result_r);  // Restore.  swap(b, q);  // Dividend < divisor; result should be q:0 r:<dividend>.  swap(a, b);  result_q = a / b;  result_r = a % b;  EXPECT_EQ(0, result_q);  EXPECT_EQ(a, result_r);  // Try the other way around.  swap(a, q);  result_q = a / b;  result_r = a % b;  EXPECT_EQ(0, result_q);  EXPECT_EQ(a, result_r);  // Restore.  swap(q, a);  swap(b, a);  // Try a large remainder.  b = a / 2 + 1;  absl::uint128 expected_r =      absl::MakeUint128(0x29876d3a0e38ea61, 0xdf92cba98c83ffff);  // Sanity checks.  ASSERT_EQ(a / 2 - 1, expected_r);  ASSERT_EQ(a, b + expected_r);  result_q = a / b;  result_r = a % b;  EXPECT_EQ(1, result_q);  EXPECT_EQ(expected_r, result_r);}TEST(Uint128, DivideAndModRandomInputs) {  const int kNumIters = 1 << 18;  std::minstd_rand random(testing::UnitTest::GetInstance()->random_seed());  std::uniform_int_distribution<uint64_t> uniform_uint64;  for (int i = 0; i < kNumIters; ++i) {    const absl::uint128 a =        absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));    const absl::uint128 b =        absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));    if (b == 0) {      continue;  // Avoid a div-by-zero.    }    const absl::uint128 q = a / b;    const absl::uint128 r = a % b;    ASSERT_EQ(a, b * q + r);  }}TEST(Uint128, ConstexprTest) {  constexpr absl::uint128 zero = absl::uint128();  constexpr absl::uint128 one = 1;  constexpr absl::uint128 minus_two = -2;  EXPECT_EQ(zero, absl::uint128(0));  EXPECT_EQ(one, absl::uint128(1));  EXPECT_EQ(minus_two, absl::MakeUint128(-1, -2));}TEST(Uint128, NumericLimitsTest) {  static_assert(std::numeric_limits<absl::uint128>::is_specialized, "");  static_assert(!std::numeric_limits<absl::uint128>::is_signed, "");  static_assert(std::numeric_limits<absl::uint128>::is_integer, "");  EXPECT_EQ(static_cast<int>(128 * std::log10(2)),            std::numeric_limits<absl::uint128>::digits10);  EXPECT_EQ(0, std::numeric_limits<absl::uint128>::min());  EXPECT_EQ(0, std::numeric_limits<absl::uint128>::lowest());  EXPECT_EQ(absl::Uint128Max(), std::numeric_limits<absl::uint128>::max());}TEST(Uint128, Hash) {  EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({      // Some simple values      absl::uint128{0},      absl::uint128{1},      ~absl::uint128{},      // 64 bit limits      absl::uint128{std::numeric_limits<int64_t>::max()},      absl::uint128{std::numeric_limits<uint64_t>::max()} + 0,      absl::uint128{std::numeric_limits<uint64_t>::max()} + 1,      absl::uint128{std::numeric_limits<uint64_t>::max()} + 2,      // Keeping high same      absl::uint128{1} << 62,      absl::uint128{1} << 63,      // Keeping low same      absl::uint128{1} << 64,      absl::uint128{1} << 65,      // 128 bit limits      std::numeric_limits<absl::uint128>::max(),      std::numeric_limits<absl::uint128>::max() - 1,      std::numeric_limits<absl::uint128>::min() + 1,      std::numeric_limits<absl::uint128>::min(),  }));}TEST(Int128Uint128, ConversionTest) {  absl::int128 nonnegative_signed_values[] = {      0,      1,      0xffeeddccbbaa9988,      absl::MakeInt128(0x7766554433221100, 0),      absl::MakeInt128(0x1234567890abcdef, 0xfedcba0987654321),      absl::Int128Max()};  for (absl::int128 value : nonnegative_signed_values) {    EXPECT_EQ(value, absl::int128(absl::uint128(value)));    absl::uint128 assigned_value;    assigned_value = value;    EXPECT_EQ(value, absl::int128(assigned_value));  }  absl::int128 negative_values[] = {      -1, -0x1234567890abcdef,      absl::MakeInt128(-0x5544332211ffeedd, 0),      -absl::MakeInt128(0x76543210fedcba98, 0xabcdef0123456789)};  for (absl::int128 value : negative_values) {    EXPECT_EQ(absl::uint128(-value), -absl::uint128(value));    absl::uint128 assigned_value;    assigned_value = value;    EXPECT_EQ(absl::uint128(-value), -assigned_value);  }}template <typename T>class Int128IntegerTraitsTest : public ::testing::Test {};TYPED_TEST_SUITE(Int128IntegerTraitsTest, IntegerTypes);TYPED_TEST(Int128IntegerTraitsTest, ConstructAssignTest) {  static_assert(std::is_constructible<absl::int128, TypeParam>::value,                "absl::int128 must be constructible from TypeParam");  static_assert(std::is_assignable<absl::int128&, TypeParam>::value,                "absl::int128 must be assignable from TypeParam");  static_assert(!std::is_assignable<TypeParam&, absl::int128>::value,                "TypeParam must not be assignable from absl::int128");}template <typename T>class Int128FloatTraitsTest : public ::testing::Test {};TYPED_TEST_SUITE(Int128FloatTraitsTest, FloatingPointTypes);TYPED_TEST(Int128FloatTraitsTest, ConstructAssignTest) {  static_assert(std::is_constructible<absl::int128, TypeParam>::value,                "absl::int128 must be constructible from TypeParam");  static_assert(!std::is_assignable<absl::int128&, TypeParam>::value,                "absl::int128 must not be assignable from TypeParam");  static_assert(!std::is_assignable<TypeParam&, absl::int128>::value,                "TypeParam must not be assignable from absl::int128");}#ifdef ABSL_HAVE_INTRINSIC_INT128// These type traits done separately as TYPED_TEST requires typeinfo, and not// all platforms have this for __int128 even though they define the type.TEST(Int128, IntrinsicTypeTraitsTest) {  static_assert(std::is_constructible<absl::int128, __int128>::value,                "absl::int128 must be constructible from __int128");  static_assert(std::is_assignable<absl::int128&, __int128>::value,                "absl::int128 must be assignable from __int128");  static_assert(!std::is_assignable<__int128&, absl::int128>::value,                "__int128 must not be assignable from absl::int128");  static_assert(std::is_constructible<absl::int128, unsigned __int128>::value,                "absl::int128 must be constructible from unsigned __int128");  static_assert(!std::is_assignable<absl::int128&, unsigned __int128>::value,                "absl::int128 must be assignable from unsigned __int128");  static_assert(!std::is_assignable<unsigned __int128&, absl::int128>::value,                "unsigned __int128 must not be assignable from absl::int128");}#endif  // ABSL_HAVE_INTRINSIC_INT128TEST(Int128, TrivialTraitsTest) {  static_assert(absl::is_trivially_default_constructible<absl::int128>::value,                "");  static_assert(absl::is_trivially_copy_constructible<absl::int128>::value, "");  static_assert(absl::is_trivially_copy_assignable<absl::int128>::value, "");  static_assert(std::is_trivially_destructible<absl::int128>::value, "");}TEST(Int128, BoolConversionTest) {  EXPECT_FALSE(absl::int128(0));  for (int i = 0; i < 64; ++i) {    EXPECT_TRUE(absl::MakeInt128(0, uint64_t{1} << i));  }  for (int i = 0; i < 63; ++i) {    EXPECT_TRUE(absl::MakeInt128(int64_t{1} << i, 0));  }  EXPECT_TRUE(absl::Int128Min());  EXPECT_EQ(absl::int128(1), absl::int128(true));  EXPECT_EQ(absl::int128(0), absl::int128(false));}template <typename T>class Int128IntegerConversionTest : public ::testing::Test {};TYPED_TEST_SUITE(Int128IntegerConversionTest, IntegerTypes);TYPED_TEST(Int128IntegerConversionTest, RoundTripTest) {  EXPECT_EQ(TypeParam{0}, static_cast<TypeParam>(absl::int128(0)));  EXPECT_EQ(std::numeric_limits<TypeParam>::min(),            static_cast<TypeParam>(                absl::int128(std::numeric_limits<TypeParam>::min())));  EXPECT_EQ(std::numeric_limits<TypeParam>::max(),            static_cast<TypeParam>(                absl::int128(std::numeric_limits<TypeParam>::max())));}template <typename T>class Int128FloatConversionTest : public ::testing::Test {};TYPED_TEST_SUITE(Int128FloatConversionTest, FloatingPointTypes);TYPED_TEST(Int128FloatConversionTest, ConstructAndCastTest) {  // Conversions where the floating point values should be exactly the same.  // 0x9f5b is a randomly chosen small value.  for (int i = 0; i < 110; ++i) {  // 110 = 126 - #bits in 0x9f5b    SCOPED_TRACE(::testing::Message() << "i = " << i);    TypeParam float_value = std::ldexp(static_cast<TypeParam>(0x9f5b), i);    absl::int128 int_value = absl::int128(0x9f5b) << i;    EXPECT_EQ(float_value, static_cast<TypeParam>(int_value));    EXPECT_EQ(-float_value, static_cast<TypeParam>(-int_value));    EXPECT_EQ(int_value, absl::int128(float_value));    EXPECT_EQ(-int_value, absl::int128(-float_value));  }  // Round trip conversions with a small sample of randomly generated uint64_t  // values (less than int64_t max so that value * 2^64 fits into int128).  uint64_t values[] = {0x6d4492c24fb86199, 0x26ead65e4cb359b5,                       0x2c43407433ba3fd1, 0x3b574ec668df6b55,                       0x1c750e55a29f4f0f};  for (uint64_t value : values) {    for (int i = 0; i <= 64; ++i) {      SCOPED_TRACE(::testing::Message()                   << "value = " << value << "; i = " << i);      TypeParam fvalue = std::ldexp(static_cast<TypeParam>(value), i);      EXPECT_DOUBLE_EQ(fvalue, static_cast<TypeParam>(absl::int128(fvalue)));      EXPECT_DOUBLE_EQ(-fvalue, static_cast<TypeParam>(-absl::int128(fvalue)));      EXPECT_DOUBLE_EQ(-fvalue, static_cast<TypeParam>(absl::int128(-fvalue)));      EXPECT_DOUBLE_EQ(fvalue, static_cast<TypeParam>(-absl::int128(-fvalue)));    }  }  // Round trip conversions with a small sample of random large positive values.  absl::int128 large_values[] = {      absl::MakeInt128(0x5b0640d96c7b3d9f, 0xb7a7189e51d18622),      absl::MakeInt128(0x34bed042c6f65270, 0x73b236570669a089),      absl::MakeInt128(0x43deba9e6da12724, 0xf7f0f83da686797d),      absl::MakeInt128(0x71e8d383be4e5589, 0x75c3f96fb00752b6)};  for (absl::int128 value : large_values) {    // Make value have as many significant bits as can be represented by    // the mantissa, also making sure the highest and lowest bit in the range    // are set.    value >>= (127 - std::numeric_limits<TypeParam>::digits);    value |= absl::int128(1) << (std::numeric_limits<TypeParam>::digits - 1);    value |= 1;    for (int i = 0; i < 127 - std::numeric_limits<TypeParam>::digits; ++i) {      absl::int128 int_value = value << i;      EXPECT_EQ(int_value,                static_cast<absl::int128>(static_cast<TypeParam>(int_value)));      EXPECT_EQ(-int_value,                static_cast<absl::int128>(static_cast<TypeParam>(-int_value)));    }  }  // Small sample of checks that rounding is toward zero  EXPECT_EQ(0, absl::int128(TypeParam(0.1)));  EXPECT_EQ(17, absl::int128(TypeParam(17.8)));  EXPECT_EQ(0, absl::int128(TypeParam(-0.8)));  EXPECT_EQ(-53, absl::int128(TypeParam(-53.1)));  EXPECT_EQ(0, absl::int128(TypeParam(0.5)));  EXPECT_EQ(0, absl::int128(TypeParam(-0.5)));  TypeParam just_lt_one = std::nexttoward(TypeParam(1), TypeParam(0));  EXPECT_EQ(0, absl::int128(just_lt_one));  TypeParam just_gt_minus_one = std::nexttoward(TypeParam(-1), TypeParam(0));  EXPECT_EQ(0, absl::int128(just_gt_minus_one));  // Check limits  EXPECT_DOUBLE_EQ(std::ldexp(static_cast<TypeParam>(1), 127),                   static_cast<TypeParam>(absl::Int128Max()));  EXPECT_DOUBLE_EQ(-std::ldexp(static_cast<TypeParam>(1), 127),                   static_cast<TypeParam>(absl::Int128Min()));}TEST(Int128, FactoryTest) {  EXPECT_EQ(absl::int128(-1), absl::MakeInt128(-1, -1));  EXPECT_EQ(absl::int128(-31), absl::MakeInt128(-1, -31));  EXPECT_EQ(absl::int128(std::numeric_limits<int64_t>::min()),            absl::MakeInt128(-1, std::numeric_limits<int64_t>::min()));  EXPECT_EQ(absl::int128(0), absl::MakeInt128(0, 0));  EXPECT_EQ(absl::int128(1), absl::MakeInt128(0, 1));  EXPECT_EQ(absl::int128(std::numeric_limits<int64_t>::max()),            absl::MakeInt128(0, std::numeric_limits<int64_t>::max()));}TEST(Int128, HighLowTest) {  struct HighLowPair {    int64_t high;    uint64_t low;  };  HighLowPair values[]{{0, 0}, {0, 1}, {1, 0}, {123, 456}, {-654, 321}};  for (const HighLowPair& pair : values) {    absl::int128 value = absl::MakeInt128(pair.high, pair.low);    EXPECT_EQ(pair.low, absl::Int128Low64(value));    EXPECT_EQ(pair.high, absl::Int128High64(value));  }}TEST(Int128, LimitsTest) {  EXPECT_EQ(absl::MakeInt128(0x7fffffffffffffff, 0xffffffffffffffff),            absl::Int128Max());  EXPECT_EQ(absl::Int128Max(), ~absl::Int128Min());}#if defined(ABSL_HAVE_INTRINSIC_INT128)TEST(Int128, IntrinsicConversionTest) {  __int128 intrinsic =      (static_cast<__int128>(0x3a5b76c209de76f6) << 64) + 0x1f25e1d63a2b46c5;  absl::int128 custom =      absl::MakeInt128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5);  EXPECT_EQ(custom, absl::int128(intrinsic));  EXPECT_EQ(intrinsic, static_cast<__int128>(custom));}#endif  // ABSL_HAVE_INTRINSIC_INT128TEST(Int128, ConstexprTest) {  constexpr absl::int128 zero = absl::int128();  constexpr absl::int128 one = 1;  constexpr absl::int128 minus_two = -2;  constexpr absl::int128 min = absl::Int128Min();  constexpr absl::int128 max = absl::Int128Max();  EXPECT_EQ(zero, absl::int128(0));  EXPECT_EQ(one, absl::int128(1));  EXPECT_EQ(minus_two, absl::MakeInt128(-1, -2));  EXPECT_GT(max, one);  EXPECT_LT(min, minus_two);}TEST(Int128, ComparisonTest) {  struct TestCase {    absl::int128 smaller;    absl::int128 larger;  };  TestCase cases[] = {      {absl::int128(0), absl::int128(123)},      {absl::MakeInt128(-12, 34), absl::MakeInt128(12, 34)},      {absl::MakeInt128(1, 1000), absl::MakeInt128(1000, 1)},      {absl::MakeInt128(-1000, 1000), absl::MakeInt128(-1, 1)},  };  for (const TestCase& pair : cases) {    SCOPED_TRACE(::testing::Message() << "pair.smaller = " << pair.smaller                                      << "; pair.larger = " << pair.larger);    EXPECT_TRUE(pair.smaller == pair.smaller);  // NOLINT(readability/check)    EXPECT_TRUE(pair.larger == pair.larger);    // NOLINT(readability/check)    EXPECT_FALSE(pair.smaller == pair.larger);  // NOLINT(readability/check)    EXPECT_TRUE(pair.smaller != pair.larger);    // NOLINT(readability/check)    EXPECT_FALSE(pair.smaller != pair.smaller);  // NOLINT(readability/check)    EXPECT_FALSE(pair.larger != pair.larger);    // NOLINT(readability/check)    EXPECT_TRUE(pair.smaller < pair.larger);   // NOLINT(readability/check)    EXPECT_FALSE(pair.larger < pair.smaller);  // NOLINT(readability/check)    EXPECT_TRUE(pair.larger > pair.smaller);   // NOLINT(readability/check)    EXPECT_FALSE(pair.smaller > pair.larger);  // NOLINT(readability/check)    EXPECT_TRUE(pair.smaller <= pair.larger);   // NOLINT(readability/check)    EXPECT_FALSE(pair.larger <= pair.smaller);  // NOLINT(readability/check)    EXPECT_TRUE(pair.smaller <= pair.smaller);  // NOLINT(readability/check)    EXPECT_TRUE(pair.larger <= pair.larger);    // NOLINT(readability/check)    EXPECT_TRUE(pair.larger >= pair.smaller);   // NOLINT(readability/check)    EXPECT_FALSE(pair.smaller >= pair.larger);  // NOLINT(readability/check)    EXPECT_TRUE(pair.smaller >= pair.smaller);  // NOLINT(readability/check)    EXPECT_TRUE(pair.larger >= pair.larger);    // NOLINT(readability/check)  }}TEST(Int128, UnaryNegationTest) {  int64_t values64[] = {0, 1, 12345, 0x4000000000000000,                        std::numeric_limits<int64_t>::max()};  for (int64_t value : values64) {    SCOPED_TRACE(::testing::Message() << "value = " << value);    EXPECT_EQ(absl::int128(-value), -absl::int128(value));    EXPECT_EQ(absl::int128(value), -absl::int128(-value));    EXPECT_EQ(absl::MakeInt128(-value, 0), -absl::MakeInt128(value, 0));    EXPECT_EQ(absl::MakeInt128(value, 0), -absl::MakeInt128(-value, 0));  }}TEST(Int128, LogicalNotTest) {  EXPECT_TRUE(!absl::int128(0));  for (int i = 0; i < 64; ++i) {    EXPECT_FALSE(!absl::MakeInt128(0, uint64_t{1} << i));  }  for (int i = 0; i < 63; ++i) {    EXPECT_FALSE(!absl::MakeInt128(int64_t{1} << i, 0));  }}TEST(Int128, AdditionSubtractionTest) {  // 64 bit pairs that will not cause overflow / underflow. These test negative  // carry; positive carry must be checked separately.  std::pair<int64_t, int64_t> cases[]{      {0, 0},                              // 0, 0      {0, 2945781290834},                  // 0, +      {1908357619234, 0},                  // +, 0      {0, -1204895918245},                 // 0, -      {-2957928523560, 0},                 // -, 0      {89023982312461, 98346012567134},    // +, +      {-63454234568239, -23456235230773},  // -, -      {98263457263502, -21428561935925},   // +, -      {-88235237438467, 15923659234573},   // -, +  };  for (const auto& pair : cases) {    SCOPED_TRACE(::testing::Message()                 << "pair = {" << pair.first << ", " << pair.second << '}');    EXPECT_EQ(absl::int128(pair.first + pair.second),              absl::int128(pair.first) + absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.second + pair.first),              absl::int128(pair.second) += absl::int128(pair.first));    EXPECT_EQ(absl::int128(pair.first - pair.second),              absl::int128(pair.first) - absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.second - pair.first),              absl::int128(pair.second) -= absl::int128(pair.first));    EXPECT_EQ(        absl::MakeInt128(pair.second + pair.first, 0),        absl::MakeInt128(pair.second, 0) + absl::MakeInt128(pair.first, 0));    EXPECT_EQ(        absl::MakeInt128(pair.first + pair.second, 0),        absl::MakeInt128(pair.first, 0) += absl::MakeInt128(pair.second, 0));    EXPECT_EQ(        absl::MakeInt128(pair.second - pair.first, 0),        absl::MakeInt128(pair.second, 0) - absl::MakeInt128(pair.first, 0));    EXPECT_EQ(        absl::MakeInt128(pair.first - pair.second, 0),        absl::MakeInt128(pair.first, 0) -= absl::MakeInt128(pair.second, 0));  }  // check positive carry  EXPECT_EQ(absl::MakeInt128(31, 0),            absl::MakeInt128(20, 1) +                absl::MakeInt128(10, std::numeric_limits<uint64_t>::max()));}TEST(Int128, IncrementDecrementTest) {  absl::int128 value = 0;  EXPECT_EQ(0, value++);  EXPECT_EQ(1, value);  EXPECT_EQ(1, value--);  EXPECT_EQ(0, value);  EXPECT_EQ(-1, --value);  EXPECT_EQ(-1, value);  EXPECT_EQ(0, ++value);  EXPECT_EQ(0, value);}TEST(Int128, MultiplicationTest) {  // 1 bit x 1 bit, and negative combinations  for (int i = 0; i < 64; ++i) {    for (int j = 0; j < 127 - i; ++j) {      SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j);      absl::int128 a = absl::int128(1) << i;      absl::int128 b = absl::int128(1) << j;      absl::int128 c = absl::int128(1) << (i + j);      EXPECT_EQ(c, a * b);      EXPECT_EQ(-c, -a * b);      EXPECT_EQ(-c, a * -b);      EXPECT_EQ(c, -a * -b);      EXPECT_EQ(c, absl::int128(a) *= b);      EXPECT_EQ(-c, absl::int128(-a) *= b);      EXPECT_EQ(-c, absl::int128(a) *= -b);      EXPECT_EQ(c, absl::int128(-a) *= -b);    }  }  // Pairs of random values that will not overflow signed 64-bit multiplication  std::pair<int64_t, int64_t> small_values[] = {      {0x5e61, 0xf29f79ca14b4},    // +, +      {0x3e033b, -0x612c0ee549},   // +, -      {-0x052ce7e8, 0x7c728f0f},   // -, +      {-0x3af7054626, -0xfb1e1d},  // -, -  };  for (const std::pair<int64_t, int64_t>& pair : small_values) {    SCOPED_TRACE(::testing::Message()                 << "pair = {" << pair.first << ", " << pair.second << '}');    EXPECT_EQ(absl::int128(pair.first * pair.second),              absl::int128(pair.first) * absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.first * pair.second),              absl::int128(pair.first) *= absl::int128(pair.second));    EXPECT_EQ(absl::MakeInt128(pair.first * pair.second, 0),              absl::MakeInt128(pair.first, 0) * absl::int128(pair.second));    EXPECT_EQ(absl::MakeInt128(pair.first * pair.second, 0),              absl::MakeInt128(pair.first, 0) *= absl::int128(pair.second));  }  // Pairs of positive random values that will not overflow 64-bit  // multiplication and can be left shifted by 32 without overflow  std::pair<int64_t, int64_t> small_values2[] = {      {0x1bb0a110, 0x31487671},      {0x4792784e, 0x28add7d7},      {0x7b66553a, 0x11dff8ef},  };  for (const std::pair<int64_t, int64_t>& pair : small_values2) {    SCOPED_TRACE(::testing::Message()                 << "pair = {" << pair.first << ", " << pair.second << '}');    absl::int128 a = absl::int128(pair.first << 32);    absl::int128 b = absl::int128(pair.second << 32);    absl::int128 c = absl::MakeInt128(pair.first * pair.second, 0);    EXPECT_EQ(c, a * b);    EXPECT_EQ(-c, -a * b);    EXPECT_EQ(-c, a * -b);    EXPECT_EQ(c, -a * -b);    EXPECT_EQ(c, absl::int128(a) *= b);    EXPECT_EQ(-c, absl::int128(-a) *= b);    EXPECT_EQ(-c, absl::int128(a) *= -b);    EXPECT_EQ(c, absl::int128(-a) *= -b);  }  // check 0, 1, and -1 behavior with large values  absl::int128 large_values[] = {      {absl::MakeInt128(0xd66f061af02d0408, 0x727d2846cb475b53)},      {absl::MakeInt128(0x27b8d5ed6104452d, 0x03f8a33b0ee1df4f)},      {-absl::MakeInt128(0x621b6626b9e8d042, 0x27311ac99df00938)},      {-absl::MakeInt128(0x34e0656f1e95fb60, 0x4281cfd731257a47)},  };  for (absl::int128 value : large_values) {    EXPECT_EQ(0, 0 * value);    EXPECT_EQ(0, value * 0);    EXPECT_EQ(0, absl::int128(0) *= value);    EXPECT_EQ(0, value *= 0);    EXPECT_EQ(value, 1 * value);    EXPECT_EQ(value, value * 1);    EXPECT_EQ(value, absl::int128(1) *= value);    EXPECT_EQ(value, value *= 1);    EXPECT_EQ(-value, -1 * value);    EXPECT_EQ(-value, value * -1);    EXPECT_EQ(-value, absl::int128(-1) *= value);    EXPECT_EQ(-value, value *= -1);  }  // Manually calculated random large value cases  EXPECT_EQ(absl::MakeInt128(0xcd0efd3442219bb, 0xde47c05bcd9df6e1),            absl::MakeInt128(0x7c6448, 0x3bc4285c47a9d253) * 0x1a6037537b);  EXPECT_EQ(-absl::MakeInt128(0x1f8f149850b1e5e6, 0x1e50d6b52d272c3e),            -absl::MakeInt128(0x23, 0x2e68a513ca1b8859) * 0xe5a434cd14866e);  EXPECT_EQ(-absl::MakeInt128(0x55cae732029d1fce, 0xca6474b6423263e4),            0xa9b98a8ddf66bc * -absl::MakeInt128(0x81, 0x672e58231e2469d7));  EXPECT_EQ(absl::MakeInt128(0x19c8b7620b507dc4, 0xfec042b71a5f29a4),            -0x3e39341147 * -absl::MakeInt128(0x6a14b2, 0x5ed34cca42327b3c));  EXPECT_EQ(absl::MakeInt128(0xcd0efd3442219bb, 0xde47c05bcd9df6e1),            absl::MakeInt128(0x7c6448, 0x3bc4285c47a9d253) *= 0x1a6037537b);  EXPECT_EQ(-absl::MakeInt128(0x1f8f149850b1e5e6, 0x1e50d6b52d272c3e),            -absl::MakeInt128(0x23, 0x2e68a513ca1b8859) *= 0xe5a434cd14866e);  EXPECT_EQ(-absl::MakeInt128(0x55cae732029d1fce, 0xca6474b6423263e4),            absl::int128(0xa9b98a8ddf66bc) *=            -absl::MakeInt128(0x81, 0x672e58231e2469d7));  EXPECT_EQ(absl::MakeInt128(0x19c8b7620b507dc4, 0xfec042b71a5f29a4),            absl::int128(-0x3e39341147) *=            -absl::MakeInt128(0x6a14b2, 0x5ed34cca42327b3c));}TEST(Int128, DivisionAndModuloTest) {  // Check against 64 bit division and modulo operators with a sample of  // randomly generated pairs.  std::pair<int64_t, int64_t> small_pairs[] = {      {0x15f2a64138, 0x67da05},    {0x5e56d194af43045f, 0xcf1543fb99},      {0x15e61ed052036a, -0xc8e6}, {0x88125a341e85, -0xd23fb77683},      {-0xc06e20, 0x5a},           {-0x4f100219aea3e85d, 0xdcc56cb4efe993},      {-0x168d629105, -0xa7},      {-0x7b44e92f03ab2375, -0x6516},  };  for (const std::pair<int64_t, int64_t>& pair : small_pairs) {    SCOPED_TRACE(::testing::Message()                 << "pair = {" << pair.first << ", " << pair.second << '}');    absl::int128 dividend = pair.first;    absl::int128 divisor = pair.second;    int64_t quotient = pair.first / pair.second;    int64_t remainder = pair.first % pair.second;    EXPECT_EQ(quotient, dividend / divisor);    EXPECT_EQ(quotient, absl::int128(dividend) /= divisor);    EXPECT_EQ(remainder, dividend % divisor);    EXPECT_EQ(remainder, absl::int128(dividend) %= divisor);  }  // Test behavior with 0, 1, and -1 with a sample of randomly generated large  // values.  absl::int128 values[] = {      absl::MakeInt128(0x63d26ee688a962b2, 0x9e1411abda5c1d70),      absl::MakeInt128(0x152f385159d6f986, 0xbf8d48ef63da395d),      -absl::MakeInt128(0x3098d7567030038c, 0x14e7a8a098dc2164),      -absl::MakeInt128(0x49a037aca35c809f, 0xa6a87525480ef330),  };  for (absl::int128 value : values) {    SCOPED_TRACE(::testing::Message() << "value = " << value);    EXPECT_EQ(0, 0 / value);    EXPECT_EQ(0, absl::int128(0) /= value);    EXPECT_EQ(0, 0 % value);    EXPECT_EQ(0, absl::int128(0) %= value);    EXPECT_EQ(value, value / 1);    EXPECT_EQ(value, absl::int128(value) /= 1);    EXPECT_EQ(0, value % 1);    EXPECT_EQ(0, absl::int128(value) %= 1);    EXPECT_EQ(-value, value / -1);    EXPECT_EQ(-value, absl::int128(value) /= -1);    EXPECT_EQ(0, value % -1);    EXPECT_EQ(0, absl::int128(value) %= -1);  }  // Min and max values  EXPECT_EQ(0, absl::Int128Max() / absl::Int128Min());  EXPECT_EQ(absl::Int128Max(), absl::Int128Max() % absl::Int128Min());  EXPECT_EQ(-1, absl::Int128Min() / absl::Int128Max());  EXPECT_EQ(-1, absl::Int128Min() % absl::Int128Max());  // Power of two division and modulo of random large dividends  absl::int128 positive_values[] = {      absl::MakeInt128(0x21e1a1cc69574620, 0xe7ac447fab2fc869),      absl::MakeInt128(0x32c2ff3ab89e66e8, 0x03379a613fd1ce74),      absl::MakeInt128(0x6f32ca786184dcaf, 0x046f9c9ecb3a9ce1),      absl::MakeInt128(0x1aeb469dd990e0ee, 0xda2740f243cd37eb),  };  for (absl::int128 value : positive_values) {    for (int i = 0; i < 127; ++i) {      SCOPED_TRACE(::testing::Message()                   << "value = " << value << "; i = " << i);      absl::int128 power_of_two = absl::int128(1) << i;      EXPECT_EQ(value >> i, value / power_of_two);      EXPECT_EQ(value >> i, absl::int128(value) /= power_of_two);      EXPECT_EQ(value & (power_of_two - 1), value % power_of_two);      EXPECT_EQ(value & (power_of_two - 1),                absl::int128(value) %= power_of_two);    }  }  // Manually calculated cases with random large dividends  struct DivisionModCase {    absl::int128 dividend;    absl::int128 divisor;    absl::int128 quotient;    absl::int128 remainder;  };  DivisionModCase manual_cases[] = {      {absl::MakeInt128(0x6ada48d489007966, 0x3c9c5c98150d5d69),       absl::MakeInt128(0x8bc308fb, 0x8cb9cc9a3b803344), 0xc3b87e08,       absl::MakeInt128(0x1b7db5e1, 0xd9eca34b7af04b49)},      {absl::MakeInt128(0xd6946511b5b, 0x4886c5c96546bf5f),       -absl::MakeInt128(0x263b, 0xfd516279efcfe2dc), -0x59cbabf0,       absl::MakeInt128(0x622, 0xf462909155651d1f)},      {-absl::MakeInt128(0x33db734f9e8d1399, 0x8447ac92482bca4d), 0x37495078240,       -absl::MakeInt128(0xf01f1, 0xbc0368bf9a77eae8), -0x21a508f404d},      {-absl::MakeInt128(0x13f837b409a07e7d, 0x7fc8e248a7d73560), -0x1b9f,       absl::MakeInt128(0xb9157556d724, 0xb14f635714d7563e), -0x1ade},  };  for (const DivisionModCase test_case : manual_cases) {    EXPECT_EQ(test_case.quotient, test_case.dividend / test_case.divisor);    EXPECT_EQ(test_case.quotient,              absl::int128(test_case.dividend) /= test_case.divisor);    EXPECT_EQ(test_case.remainder, test_case.dividend % test_case.divisor);    EXPECT_EQ(test_case.remainder,              absl::int128(test_case.dividend) %= test_case.divisor);  }}TEST(Int128, BitwiseLogicTest) {  EXPECT_EQ(absl::int128(-1), ~absl::int128(0));  absl::int128 values[]{      0, -1, 0xde400bee05c3ff6b, absl::MakeInt128(0x7f32178dd81d634a, 0),      absl::MakeInt128(0xaf539057055613a9, 0x7d104d7d946c2e4d)};  for (absl::int128 value : values) {    EXPECT_EQ(value, ~~value);    EXPECT_EQ(value, value | value);    EXPECT_EQ(value, value & value);    EXPECT_EQ(0, value ^ value);    EXPECT_EQ(value, absl::int128(value) |= value);    EXPECT_EQ(value, absl::int128(value) &= value);    EXPECT_EQ(0, absl::int128(value) ^= value);    EXPECT_EQ(value, value | 0);    EXPECT_EQ(0, value & 0);    EXPECT_EQ(value, value ^ 0);    EXPECT_EQ(absl::int128(-1), value | absl::int128(-1));    EXPECT_EQ(value, value & absl::int128(-1));    EXPECT_EQ(~value, value ^ absl::int128(-1));  }  // small sample of randomly generated int64_t's  std::pair<int64_t, int64_t> pairs64[]{      {0x7f86797f5e991af4, 0x1ee30494fb007c97},      {0x0b278282bacf01af, 0x58780e0a57a49e86},      {0x059f266ccb93a666, 0x3d5b731bae9286f5},      {0x63c0c4820f12108c, 0x58166713c12e1c3a},      {0x381488bb2ed2a66e, 0x2220a3eb76a3698c},      {0x2a0a0dfb81e06f21, 0x4b60585927f5523c},      {0x555b1c3a03698537, 0x25478cd19d8e53cb},      {0x4750f6f27d779225, 0x16397553c6ff05fc},  };  for (const std::pair<int64_t, int64_t>& pair : pairs64) {    SCOPED_TRACE(::testing::Message()                 << "pair = {" << pair.first << ", " << pair.second << '}');    EXPECT_EQ(absl::MakeInt128(~pair.first, ~pair.second),              ~absl::MakeInt128(pair.first, pair.second));    EXPECT_EQ(absl::int128(pair.first & pair.second),              absl::int128(pair.first) & absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.first | pair.second),              absl::int128(pair.first) | absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.first ^ pair.second),              absl::int128(pair.first) ^ absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.first & pair.second),              absl::int128(pair.first) &= absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.first | pair.second),              absl::int128(pair.first) |= absl::int128(pair.second));    EXPECT_EQ(absl::int128(pair.first ^ pair.second),              absl::int128(pair.first) ^= absl::int128(pair.second));    EXPECT_EQ(        absl::MakeInt128(pair.first & pair.second, 0),        absl::MakeInt128(pair.first, 0) & absl::MakeInt128(pair.second, 0));    EXPECT_EQ(        absl::MakeInt128(pair.first | pair.second, 0),        absl::MakeInt128(pair.first, 0) | absl::MakeInt128(pair.second, 0));    EXPECT_EQ(        absl::MakeInt128(pair.first ^ pair.second, 0),        absl::MakeInt128(pair.first, 0) ^ absl::MakeInt128(pair.second, 0));    EXPECT_EQ(        absl::MakeInt128(pair.first & pair.second, 0),        absl::MakeInt128(pair.first, 0) &= absl::MakeInt128(pair.second, 0));    EXPECT_EQ(        absl::MakeInt128(pair.first | pair.second, 0),        absl::MakeInt128(pair.first, 0) |= absl::MakeInt128(pair.second, 0));    EXPECT_EQ(        absl::MakeInt128(pair.first ^ pair.second, 0),        absl::MakeInt128(pair.first, 0) ^= absl::MakeInt128(pair.second, 0));  }}TEST(Int128, BitwiseShiftTest) {  for (int i = 0; i < 64; ++i) {    for (int j = 0; j <= i; ++j) {      // Left shift from j-th bit to i-th bit.      SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j);      EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) << (i - j));      EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) <<= (i - j));    }  }  for (int i = 0; i < 63; ++i) {    for (int j = 0; j < 64; ++j) {      // Left shift from j-th bit to (i + 64)-th bit.      SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j);      EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0),                absl::int128(uint64_t{1} << j) << (i + 64 - j));      EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0),                absl::int128(uint64_t{1} << j) <<= (i + 64 - j));    }    for (int j = 0; j <= i; ++j) {      // Left shift from (j + 64)-th bit to (i + 64)-th bit.      SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j);      EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0),                absl::MakeInt128(uint64_t{1} << j, 0) << (i - j));      EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0),                absl::MakeInt128(uint64_t{1} << j, 0) <<= (i - j));    }  }  for (int i = 0; i < 64; ++i) {    for (int j = i; j < 64; ++j) {      // Right shift from j-th bit to i-th bit.      SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j);      EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) >> (j - i));      EXPECT_EQ(uint64_t{1} << i, absl::int128(uint64_t{1} << j) >>= (j - i));    }    for (int j = 0; j < 63; ++j) {      // Right shift from (j + 64)-th bit to i-th bit.      SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j);      EXPECT_EQ(uint64_t{1} << i,                absl::MakeInt128(uint64_t{1} << j, 0) >> (j + 64 - i));      EXPECT_EQ(uint64_t{1} << i,                absl::MakeInt128(uint64_t{1} << j, 0) >>= (j + 64 - i));    }  }  for (int i = 0; i < 63; ++i) {    for (int j = i; j < 63; ++j) {      // Right shift from (j + 64)-th bit to (i + 64)-th bit.      SCOPED_TRACE(::testing::Message() << "i = " << i << "; j = " << j);      EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0),                absl::MakeInt128(uint64_t{1} << j, 0) >> (j - i));      EXPECT_EQ(absl::MakeInt128(uint64_t{1} << i, 0),                absl::MakeInt128(uint64_t{1} << j, 0) >>= (j - i));    }  }}TEST(Int128, NumericLimitsTest) {  static_assert(std::numeric_limits<absl::int128>::is_specialized, "");  static_assert(std::numeric_limits<absl::int128>::is_signed, "");  static_assert(std::numeric_limits<absl::int128>::is_integer, "");  EXPECT_EQ(static_cast<int>(127 * std::log10(2)),            std::numeric_limits<absl::int128>::digits10);  EXPECT_EQ(absl::Int128Min(), std::numeric_limits<absl::int128>::min());  EXPECT_EQ(absl::Int128Min(), std::numeric_limits<absl::int128>::lowest());  EXPECT_EQ(absl::Int128Max(), std::numeric_limits<absl::int128>::max());}}  // namespace
 |