| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | //// Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/debugging/internal/stack_consumption.h"#ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION#include <signal.h>#include <sys/mman.h>#include <unistd.h>#include <string.h>#include "absl/base/attributes.h"#include "absl/base/internal/raw_logging.h"namespace absl {inline namespace lts_2018_06_20 {namespace debugging_internal {namespace {// This code requires that we know the direction in which the stack// grows. It is commonly believed that this can be detected by putting// a variable on the stack and then passing its address to a function// that compares the address of this variable to the address of a// variable on the function's own stack. However, this is unspecified// behavior in C++: If two pointers p and q of the same type point to// different objects that are not members of the same object or// elements of the same array or to different functions, or if only// one of them is null, the results of p<q, p>q, p<=q, and p>=q are// unspecified. Therefore, instead we hardcode the direction of the// stack on platforms we know about.#if defined(__i386__) || defined(__x86_64__) || defined(__ppc__)constexpr bool kStackGrowsDown = true;#else#error Need to define kStackGrowsDown#endif// To measure the stack footprint of some code, we create a signal handler// (for SIGUSR2 say) that exercises this code on an alternate stack. This// alternate stack is initialized to some known pattern (0x55, 0x55, 0x55,// ...). We then self-send this signal, and after the signal handler returns,// look at the alternate stack buffer to see what portion has been touched.//// This trick gives us the the stack footprint of the signal handler.  But the// signal handler, even before the code for it is exercised, consumes some// stack already. We however only want the stack usage of the code inside the// signal handler. To measure this accurately, we install two signal handlers:// one that does nothing and just returns, and the user-provided signal// handler. The difference between the stack consumption of these two signals// handlers should give us the stack foorprint of interest.void EmptySignalHandler(int) {}// This is arbitrary value, and could be increase further, at the cost of// memset()ting it all to known sentinel value.constexpr int kAlternateStackSize = 64 << 10;  // 64KiBconstexpr int kSafetyMargin = 32;constexpr char kAlternateStackFillValue = 0x55;// These helper functions look at the alternate stack buffer, and figure// out what portion of this buffer has been touched - this is the stack// consumption of the signal handler running on this alternate stack.// This function will return -1 if the alternate stack buffer has not been// touched. It will abort the program if the buffer has overflowed or is about// to overflow.int GetStackConsumption(const void* const altstack) {  const char* begin;  int increment;  if (kStackGrowsDown) {    begin = reinterpret_cast<const char*>(altstack);    increment = 1;  } else {    begin = reinterpret_cast<const char*>(altstack) + kAlternateStackSize - 1;    increment = -1;  }  for (int usage_count = kAlternateStackSize; usage_count > 0; --usage_count) {    if (*begin != kAlternateStackFillValue) {      ABSL_RAW_CHECK(usage_count <= kAlternateStackSize - kSafetyMargin,                     "Buffer has overflowed or is about to overflow");      return usage_count;    }    begin += increment;  }  ABSL_RAW_LOG(FATAL, "Unreachable code");  return -1;}}  // namespaceint GetSignalHandlerStackConsumption(void (*signal_handler)(int)) {  // The alt-signal-stack cannot be heap allocated because there is a  // bug in glibc-2.2 where some signal handler setup code looks at the  // current stack pointer to figure out what thread is currently running.  // Therefore, the alternate stack must be allocated from the main stack  // itself.  void* altstack = mmap(nullptr, kAlternateStackSize, PROT_READ | PROT_WRITE,                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);  ABSL_RAW_CHECK(altstack != MAP_FAILED, "mmap() failed");  // Set up the alt-signal-stack (and save the older one).  stack_t sigstk;  memset(&sigstk, 0, sizeof(sigstk));  stack_t old_sigstk;  sigstk.ss_sp = altstack;  sigstk.ss_size = kAlternateStackSize;  sigstk.ss_flags = 0;  ABSL_RAW_CHECK(sigaltstack(&sigstk, &old_sigstk) == 0,                 "sigaltstack() failed");  // Set up SIGUSR1 and SIGUSR2 signal handlers (and save the older ones).  struct sigaction sa;  memset(&sa, 0, sizeof(sa));  struct sigaction old_sa1, old_sa2;  sigemptyset(&sa.sa_mask);  sa.sa_flags = SA_ONSTACK;  // SIGUSR1 maps to EmptySignalHandler.  sa.sa_handler = EmptySignalHandler;  ABSL_RAW_CHECK(sigaction(SIGUSR1, &sa, &old_sa1) == 0, "sigaction() failed");  // SIGUSR2 maps to signal_handler.  sa.sa_handler = signal_handler;  ABSL_RAW_CHECK(sigaction(SIGUSR2, &sa, &old_sa2) == 0, "sigaction() failed");  // Send SIGUSR1 signal and measure the stack consumption of the empty  // signal handler.  // The first signal might use more stack space. Run once and ignore the  // results to get that out of the way.  ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");  memset(altstack, kAlternateStackFillValue, kAlternateStackSize);  ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");  int base_stack_consumption = GetStackConsumption(altstack);  // Send SIGUSR2 signal and measure the stack consumption of signal_handler.  ABSL_RAW_CHECK(kill(getpid(), SIGUSR2) == 0, "kill() failed");  int signal_handler_stack_consumption = GetStackConsumption(altstack);  // Now restore the old alt-signal-stack and signal handlers.  ABSL_RAW_CHECK(sigaltstack(&old_sigstk, nullptr) == 0,                 "sigaltstack() failed");  ABSL_RAW_CHECK(sigaction(SIGUSR1, &old_sa1, nullptr) == 0,                 "sigaction() failed");  ABSL_RAW_CHECK(sigaction(SIGUSR2, &old_sa2, nullptr) == 0,                 "sigaction() failed");  ABSL_RAW_CHECK(munmap(altstack, kAlternateStackSize) == 0, "munmap() failed");  if (signal_handler_stack_consumption != -1 && base_stack_consumption != -1) {    return signal_handler_stack_consumption - base_stack_consumption;  }  return -1;}}  // namespace debugging_internal}  // inline namespace lts_2018_06_20}  // namespace absl#endif  // ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION
 |