| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898 | // Copyright 2019 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_#define ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_#include <algorithm>#include <cstddef>#include <cstring>#include <iterator>#include <memory>#include <utility>#include "absl/base/macros.h"#include "absl/container/internal/compressed_tuple.h"#include "absl/memory/memory.h"#include "absl/meta/type_traits.h"#include "absl/types/span.h"namespace absl {namespace inlined_vector_internal {template <typename Iterator>using IsAtLeastForwardIterator = std::is_convertible<    typename std::iterator_traits<Iterator>::iterator_category,    std::forward_iterator_tag>;template <typename AllocatorType>using IsMemcpyOk = absl::conjunction<    std::is_same<std::allocator<typename AllocatorType::value_type>,                 AllocatorType>,    absl::is_trivially_copy_constructible<typename AllocatorType::value_type>,    absl::is_trivially_copy_assignable<typename AllocatorType::value_type>,    absl::is_trivially_destructible<typename AllocatorType::value_type>>;template <typename AllocatorType, typename ValueType, typename SizeType>void DestroyElements(AllocatorType* alloc_ptr, ValueType* destroy_first,                     SizeType destroy_size) {  using AllocatorTraits = absl::allocator_traits<AllocatorType>;  if (destroy_first != nullptr) {    for (auto i = destroy_size; i != 0;) {      --i;      AllocatorTraits::destroy(*alloc_ptr, destroy_first + i);    }#ifndef NDEBUG    // Overwrite unused memory with `0xab` so we can catch uninitialized usage.    //    // Cast to `void*` to tell the compiler that we don't care that we might be    // scribbling on a vtable pointer.    auto* memory_ptr = static_cast<void*>(destroy_first);    auto memory_size = sizeof(ValueType) * destroy_size;    std::memset(memory_ptr, 0xab, memory_size);#endif  // NDEBUG  }}template <typename AllocatorType, typename ValueType, typename ValueAdapter,          typename SizeType>void ConstructElements(AllocatorType* alloc_ptr, ValueType* construct_first,                       ValueAdapter* values_ptr, SizeType construct_size) {  // If any construction fails, all completed constructions are rolled back.  for (SizeType i = 0; i < construct_size; ++i) {    ABSL_INTERNAL_TRY {      values_ptr->ConstructNext(alloc_ptr, construct_first + i);    }    ABSL_INTERNAL_CATCH_ANY {      inlined_vector_internal::DestroyElements(alloc_ptr, construct_first, i);      ABSL_INTERNAL_RETHROW;    }  }}template <typename ValueType, typename ValueAdapter, typename SizeType>void AssignElements(ValueType* assign_first, ValueAdapter* values_ptr,                    SizeType assign_size) {  for (SizeType i = 0; i < assign_size; ++i) {    values_ptr->AssignNext(assign_first + i);  }}template <typename AllocatorType>struct StorageView {  using pointer = typename AllocatorType::pointer;  using size_type = typename AllocatorType::size_type;  pointer data;  size_type size;  size_type capacity;};template <typename AllocatorType, typename Iterator>class IteratorValueAdapter {  using pointer = typename AllocatorType::pointer;  using AllocatorTraits = absl::allocator_traits<AllocatorType>; public:  explicit IteratorValueAdapter(const Iterator& it) : it_(it) {}  void ConstructNext(AllocatorType* alloc_ptr, pointer construct_at) {    AllocatorTraits::construct(*alloc_ptr, construct_at, *it_);    ++it_;  }  void AssignNext(pointer assign_at) {    *assign_at = *it_;    ++it_;  } private:  Iterator it_;};template <typename AllocatorType>class CopyValueAdapter {  using pointer = typename AllocatorType::pointer;  using const_pointer = typename AllocatorType::const_pointer;  using const_reference = typename AllocatorType::const_reference;  using AllocatorTraits = absl::allocator_traits<AllocatorType>; public:  explicit CopyValueAdapter(const_reference v) : ptr_(std::addressof(v)) {}  void ConstructNext(AllocatorType* alloc_ptr, pointer construct_at) {    AllocatorTraits::construct(*alloc_ptr, construct_at, *ptr_);  }  void AssignNext(pointer assign_at) { *assign_at = *ptr_; } private:  const_pointer ptr_;};template <typename AllocatorType>class DefaultValueAdapter {  using pointer = typename AllocatorType::pointer;  using value_type = typename AllocatorType::value_type;  using AllocatorTraits = absl::allocator_traits<AllocatorType>; public:  explicit DefaultValueAdapter() {}  void ConstructNext(AllocatorType* alloc_ptr, pointer construct_at) {    AllocatorTraits::construct(*alloc_ptr, construct_at);  }  void AssignNext(pointer assign_at) { *assign_at = value_type(); }};template <typename AllocatorType>class AllocationTransaction {  using value_type = typename AllocatorType::value_type;  using pointer = typename AllocatorType::pointer;  using size_type = typename AllocatorType::size_type;  using AllocatorTraits = absl::allocator_traits<AllocatorType>; public:  explicit AllocationTransaction(AllocatorType* alloc_ptr)      : alloc_data_(*alloc_ptr, nullptr) {}  AllocationTransaction(const AllocationTransaction&) = delete;  void operator=(const AllocationTransaction&) = delete;  AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }  pointer& GetData() { return alloc_data_.template get<1>(); }  size_type& GetCapacity() { return capacity_; }  bool DidAllocate() { return GetData() != nullptr; }  pointer Allocate(size_type capacity) {    GetData() = AllocatorTraits::allocate(GetAllocator(), capacity);    GetCapacity() = capacity;    return GetData();  }  ~AllocationTransaction() {    if (DidAllocate()) {      AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity());    }  } private:  container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;  size_type capacity_ = 0;};template <typename AllocatorType>class ConstructionTransaction {  using pointer = typename AllocatorType::pointer;  using size_type = typename AllocatorType::size_type; public:  explicit ConstructionTransaction(AllocatorType* alloc_ptr)      : alloc_data_(*alloc_ptr, nullptr) {}  ConstructionTransaction(const ConstructionTransaction&) = delete;  void operator=(const ConstructionTransaction&) = delete;  template <typename ValueAdapter>  void Construct(pointer data, ValueAdapter* values_ptr, size_type size) {    inlined_vector_internal::ConstructElements(std::addressof(GetAllocator()),                                               data, values_ptr, size);    GetData() = data;    GetSize() = size;  }  void Commit() {    GetData() = nullptr;    GetSize() = 0;  }  ~ConstructionTransaction() {    if (GetData() != nullptr) {      inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()),                                               GetData(), GetSize());    }  } private:  AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }  pointer& GetData() { return alloc_data_.template get<1>(); }  size_type& GetSize() { return size_; }  container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;  size_type size_ = 0;};template <typename T, size_t N, typename A>class Storage { public:  using allocator_type = A;  using value_type = typename allocator_type::value_type;  using pointer = typename allocator_type::pointer;  using const_pointer = typename allocator_type::const_pointer;  using reference = typename allocator_type::reference;  using const_reference = typename allocator_type::const_reference;  using rvalue_reference = typename allocator_type::value_type&&;  using size_type = typename allocator_type::size_type;  using difference_type = typename allocator_type::difference_type;  using iterator = pointer;  using const_iterator = const_pointer;  using reverse_iterator = std::reverse_iterator<iterator>;  using const_reverse_iterator = std::reverse_iterator<const_iterator>;  using MoveIterator = std::move_iterator<iterator>;  using AllocatorTraits = absl::allocator_traits<allocator_type>;  using IsMemcpyOk = inlined_vector_internal::IsMemcpyOk<allocator_type>;  using StorageView = inlined_vector_internal::StorageView<allocator_type>;  template <typename Iterator>  using IteratorValueAdapter =      inlined_vector_internal::IteratorValueAdapter<allocator_type, Iterator>;  using CopyValueAdapter =      inlined_vector_internal::CopyValueAdapter<allocator_type>;  using DefaultValueAdapter =      inlined_vector_internal::DefaultValueAdapter<allocator_type>;  using AllocationTransaction =      inlined_vector_internal::AllocationTransaction<allocator_type>;  using ConstructionTransaction =      inlined_vector_internal::ConstructionTransaction<allocator_type>;  Storage() : metadata_() {}  explicit Storage(const allocator_type& alloc)      : metadata_(alloc, /* empty and inlined */ 0) {}  ~Storage() {    pointer data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData();    inlined_vector_internal::DestroyElements(GetAllocPtr(), data, GetSize());    DeallocateIfAllocated();  }  size_type GetSize() const { return GetSizeAndIsAllocated() >> 1; }  bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; }  pointer GetInlinedData() {    return reinterpret_cast<pointer>(        std::addressof(data_.inlined.inlined_data[0]));  }  const_pointer GetInlinedData() const {    return reinterpret_cast<const_pointer>(        std::addressof(data_.inlined.inlined_data[0]));  }  pointer GetAllocatedData() { return data_.allocated.allocated_data; }  const_pointer GetAllocatedData() const {    return data_.allocated.allocated_data;  }  size_type GetInlinedCapacity() const { return static_cast<size_type>(N); }  size_type GetAllocatedCapacity() const {    return data_.allocated.allocated_capacity;  }  StorageView MakeStorageView() {    return GetIsAllocated()               ? StorageView{GetAllocatedData(), GetSize(),                             GetAllocatedCapacity()}               : StorageView{GetInlinedData(), GetSize(), GetInlinedCapacity()};  }  allocator_type* GetAllocPtr() {    return std::addressof(metadata_.template get<0>());  }  const allocator_type* GetAllocPtr() const {    return std::addressof(metadata_.template get<0>());  }  void SetIsAllocated() { GetSizeAndIsAllocated() |= 1; }  void UnsetIsAllocated() {    SetIsAllocated();    GetSizeAndIsAllocated() -= 1;  }  void SetAllocatedSize(size_type size) {    GetSizeAndIsAllocated() = (size << 1) | static_cast<size_type>(1);  }  void SetInlinedSize(size_type size) { GetSizeAndIsAllocated() = size << 1; }  void SetSize(size_type size) {    GetSizeAndIsAllocated() =        (size << 1) | static_cast<size_type>(GetIsAllocated());  }  void AddSize(size_type count) { GetSizeAndIsAllocated() += count << 1; }  void SubtractSize(size_type count) {    assert(count <= GetSize());    GetSizeAndIsAllocated() -= count << 1;  }  void SetAllocatedData(pointer data, size_type capacity) {    data_.allocated.allocated_data = data;    data_.allocated.allocated_capacity = capacity;  }  void DeallocateIfAllocated() {    if (GetIsAllocated()) {      AllocatorTraits::deallocate(*GetAllocPtr(), GetAllocatedData(),                                  GetAllocatedCapacity());    }  }  void AcquireAllocation(AllocationTransaction* allocation_tx_ptr) {    SetAllocatedData(allocation_tx_ptr->GetData(),                     allocation_tx_ptr->GetCapacity());    allocation_tx_ptr->GetData() = nullptr;    allocation_tx_ptr->GetCapacity() = 0;  }  void MemcpyFrom(const Storage& other_storage) {    assert(IsMemcpyOk::value || other_storage.GetIsAllocated());    GetSizeAndIsAllocated() = other_storage.GetSizeAndIsAllocated();    data_ = other_storage.data_;  }  template <typename ValueAdapter>  void Initialize(ValueAdapter values, size_type new_size);  template <typename ValueAdapter>  void Assign(ValueAdapter values, size_type new_size);  template <typename ValueAdapter>  void Resize(ValueAdapter values, size_type new_size);  template <typename ValueAdapter>  iterator Insert(const_iterator pos, ValueAdapter values,                  size_type insert_count);  template <typename... Args>  reference EmplaceBack(Args&&... args);  iterator Erase(const_iterator from, const_iterator to);  void Reserve(size_type requested_capacity);  void ShrinkToFit();  void Swap(Storage* other_storage_ptr); private:  size_type& GetSizeAndIsAllocated() { return metadata_.template get<1>(); }  const size_type& GetSizeAndIsAllocated() const {    return metadata_.template get<1>();  }  static size_type NextCapacity(size_type current_capacity) {    return current_capacity * 2;  }  static size_type ComputeCapacity(size_type current_capacity,                                   size_type requested_capacity) {    return (std::max)(NextCapacity(current_capacity), requested_capacity);  }  using Metadata =      container_internal::CompressedTuple<allocator_type, size_type>;  struct Allocated {    pointer allocated_data;    size_type allocated_capacity;  };  struct Inlined {    using InlinedDataElement =        absl::aligned_storage_t<sizeof(value_type), alignof(value_type)>;    InlinedDataElement inlined_data[N];  };  union Data {    Allocated allocated;    Inlined inlined;  };  Metadata metadata_;  Data data_;};template <typename T, size_t N, typename A>template <typename ValueAdapter>auto Storage<T, N, A>::Initialize(ValueAdapter values, size_type new_size)    -> void {  // Only callable from constructors!  assert(!GetIsAllocated());  assert(GetSize() == 0);  pointer construct_data;  if (new_size > GetInlinedCapacity()) {    // Because this is only called from the `InlinedVector` constructors, it's    // safe to take on the allocation with size `0`. If `ConstructElements(...)`    // throws, deallocation will be automatically handled by `~Storage()`.    size_type new_capacity = ComputeCapacity(GetInlinedCapacity(), new_size);    pointer new_data = AllocatorTraits::allocate(*GetAllocPtr(), new_capacity);    SetAllocatedData(new_data, new_capacity);    SetIsAllocated();    construct_data = new_data;  } else {    construct_data = GetInlinedData();  }  inlined_vector_internal::ConstructElements(GetAllocPtr(), construct_data,                                             &values, new_size);  // Since the initial size was guaranteed to be `0` and the allocated bit is  // already correct for either case, *adding* `new_size` gives us the correct  // result faster than setting it directly.  AddSize(new_size);}template <typename T, size_t N, typename A>template <typename ValueAdapter>auto Storage<T, N, A>::Assign(ValueAdapter values, size_type new_size) -> void {  StorageView storage_view = MakeStorageView();  AllocationTransaction allocation_tx(GetAllocPtr());  absl::Span<value_type> assign_loop;  absl::Span<value_type> construct_loop;  absl::Span<value_type> destroy_loop;  if (new_size > storage_view.capacity) {    size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size);    pointer new_data = allocation_tx.Allocate(new_capacity);    construct_loop = {new_data, new_size};    destroy_loop = {storage_view.data, storage_view.size};  } else if (new_size > storage_view.size) {    assign_loop = {storage_view.data, storage_view.size};    construct_loop = {storage_view.data + storage_view.size,                      new_size - storage_view.size};  } else {    assign_loop = {storage_view.data, new_size};    destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};  }  inlined_vector_internal::AssignElements(assign_loop.data(), &values,                                          assign_loop.size());  inlined_vector_internal::ConstructElements(      GetAllocPtr(), construct_loop.data(), &values, construct_loop.size());  inlined_vector_internal::DestroyElements(GetAllocPtr(), destroy_loop.data(),                                           destroy_loop.size());  if (allocation_tx.DidAllocate()) {    DeallocateIfAllocated();    AcquireAllocation(&allocation_tx);    SetIsAllocated();  }  SetSize(new_size);}template <typename T, size_t N, typename A>template <typename ValueAdapter>auto Storage<T, N, A>::Resize(ValueAdapter values, size_type new_size) -> void {  StorageView storage_view = MakeStorageView();  AllocationTransaction allocation_tx(GetAllocPtr());  ConstructionTransaction construction_tx(GetAllocPtr());  IteratorValueAdapter<MoveIterator> move_values(      MoveIterator(storage_view.data));  absl::Span<value_type> construct_loop;  absl::Span<value_type> move_construct_loop;  absl::Span<value_type> destroy_loop;  if (new_size > storage_view.capacity) {    size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size);    pointer new_data = allocation_tx.Allocate(new_capacity);    // Construct new objects in `new_data`    construct_loop = {new_data + storage_view.size,                      new_size - storage_view.size};    // Move all existing objects into `new_data`    move_construct_loop = {new_data, storage_view.size};    // Destroy all existing objects in `storage_view.data`    destroy_loop = {storage_view.data, storage_view.size};  } else if (new_size > storage_view.size) {    // Construct new objects in `storage_view.data`    construct_loop = {storage_view.data + storage_view.size,                      new_size - storage_view.size};  } else {    // Destroy end `storage_view.size - new_size` objects in `storage_view.data`    destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};  }  construction_tx.Construct(construct_loop.data(), &values,                            construct_loop.size());  inlined_vector_internal::ConstructElements(      GetAllocPtr(), move_construct_loop.data(), &move_values,      move_construct_loop.size());  inlined_vector_internal::DestroyElements(GetAllocPtr(), destroy_loop.data(),                                           destroy_loop.size());  construction_tx.Commit();  if (allocation_tx.DidAllocate()) {    DeallocateIfAllocated();    AcquireAllocation(&allocation_tx);    SetIsAllocated();  }  SetSize(new_size);}template <typename T, size_t N, typename A>template <typename ValueAdapter>auto Storage<T, N, A>::Insert(const_iterator pos, ValueAdapter values,                              size_type insert_count) -> iterator {  StorageView storage_view = MakeStorageView();  size_type insert_index =      std::distance(const_iterator(storage_view.data), pos);  size_type insert_end_index = insert_index + insert_count;  size_type new_size = storage_view.size + insert_count;  if (new_size > storage_view.capacity) {    AllocationTransaction allocation_tx(GetAllocPtr());    ConstructionTransaction construction_tx(GetAllocPtr());    ConstructionTransaction move_construciton_tx(GetAllocPtr());    IteratorValueAdapter<MoveIterator> move_values(        MoveIterator(storage_view.data));    size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size);    pointer new_data = allocation_tx.Allocate(new_capacity);    construction_tx.Construct(new_data + insert_index, &values, insert_count);    move_construciton_tx.Construct(new_data, &move_values, insert_index);    inlined_vector_internal::ConstructElements(        GetAllocPtr(), new_data + insert_end_index, &move_values,        storage_view.size - insert_index);    inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data,                                             storage_view.size);    construction_tx.Commit();    move_construciton_tx.Commit();    DeallocateIfAllocated();    AcquireAllocation(&allocation_tx);    SetAllocatedSize(new_size);    return iterator(new_data + insert_index);  } else {    size_type move_construction_destination_index =        (std::max)(insert_end_index, storage_view.size);    ConstructionTransaction move_construction_tx(GetAllocPtr());    IteratorValueAdapter<MoveIterator> move_construction_values(        MoveIterator(storage_view.data +                     (move_construction_destination_index - insert_count)));    absl::Span<value_type> move_construction = {        storage_view.data + move_construction_destination_index,        new_size - move_construction_destination_index};    pointer move_assignment_values = storage_view.data + insert_index;    absl::Span<value_type> move_assignment = {        storage_view.data + insert_end_index,        move_construction_destination_index - insert_end_index};    absl::Span<value_type> insert_assignment = {move_assignment_values,                                                move_construction.size()};    absl::Span<value_type> insert_construction = {        insert_assignment.data() + insert_assignment.size(),        insert_count - insert_assignment.size()};    move_construction_tx.Construct(move_construction.data(),                                   &move_construction_values,                                   move_construction.size());    for (pointer destination = move_assignment.data() + move_assignment.size(),                 last_destination = move_assignment.data(),                 source = move_assignment_values + move_assignment.size();         ;) {      --destination;      --source;      if (destination < last_destination) break;      *destination = std::move(*source);    }    inlined_vector_internal::AssignElements(insert_assignment.data(), &values,                                            insert_assignment.size());    inlined_vector_internal::ConstructElements(        GetAllocPtr(), insert_construction.data(), &values,        insert_construction.size());    move_construction_tx.Commit();    AddSize(insert_count);    return iterator(storage_view.data + insert_index);  }}template <typename T, size_t N, typename A>template <typename... Args>auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> reference {  StorageView storage_view = MakeStorageView();  AllocationTransaction allocation_tx(GetAllocPtr());  IteratorValueAdapter<MoveIterator> move_values(      MoveIterator(storage_view.data));  pointer construct_data;  if (storage_view.size == storage_view.capacity) {    size_type new_capacity = NextCapacity(storage_view.capacity);    pointer new_data = allocation_tx.Allocate(new_capacity);    construct_data = new_data;  } else {    construct_data = storage_view.data;  }  pointer end = construct_data + storage_view.size;  AllocatorTraits::construct(*GetAllocPtr(), end, std::forward<Args>(args)...);  if (allocation_tx.DidAllocate()) {    ABSL_INTERNAL_TRY {      inlined_vector_internal::ConstructElements(          GetAllocPtr(), allocation_tx.GetData(), &move_values,          storage_view.size);    }    ABSL_INTERNAL_CATCH_ANY {      AllocatorTraits::destroy(*GetAllocPtr(), end);      ABSL_INTERNAL_RETHROW;    }    inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data,                                             storage_view.size);    DeallocateIfAllocated();    AcquireAllocation(&allocation_tx);    SetIsAllocated();  }  AddSize(1);  return *end;}template <typename T, size_t N, typename A>auto Storage<T, N, A>::Erase(const_iterator from, const_iterator to)    -> iterator {  assert(from != to);  StorageView storage_view = MakeStorageView();  size_type erase_size = std::distance(from, to);  size_type erase_index =      std::distance(const_iterator(storage_view.data), from);  size_type erase_end_index = erase_index + erase_size;  IteratorValueAdapter<MoveIterator> move_values(      MoveIterator(storage_view.data + erase_end_index));  inlined_vector_internal::AssignElements(storage_view.data + erase_index,                                          &move_values,                                          storage_view.size - erase_end_index);  inlined_vector_internal::DestroyElements(      GetAllocPtr(), storage_view.data + (storage_view.size - erase_size),      erase_size);  SubtractSize(erase_size);  return iterator(storage_view.data + erase_index);}template <typename T, size_t N, typename A>auto Storage<T, N, A>::Reserve(size_type requested_capacity) -> void {  StorageView storage_view = MakeStorageView();  if (ABSL_PREDICT_FALSE(requested_capacity <= storage_view.capacity)) return;  AllocationTransaction allocation_tx(GetAllocPtr());  IteratorValueAdapter<MoveIterator> move_values(      MoveIterator(storage_view.data));  size_type new_capacity =      ComputeCapacity(storage_view.capacity, requested_capacity);  pointer new_data = allocation_tx.Allocate(new_capacity);  inlined_vector_internal::ConstructElements(GetAllocPtr(), new_data,                                             &move_values, storage_view.size);  inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data,                                           storage_view.size);  DeallocateIfAllocated();  AcquireAllocation(&allocation_tx);  SetIsAllocated();}template <typename T, size_t N, typename A>auto Storage<T, N, A>::ShrinkToFit() -> void {  // May only be called on allocated instances!  assert(GetIsAllocated());  StorageView storage_view{GetAllocatedData(), GetSize(),                           GetAllocatedCapacity()};  if (ABSL_PREDICT_FALSE(storage_view.size == storage_view.capacity)) return;  AllocationTransaction allocation_tx(GetAllocPtr());  IteratorValueAdapter<MoveIterator> move_values(      MoveIterator(storage_view.data));  pointer construct_data;  if (storage_view.size > GetInlinedCapacity()) {    size_type new_capacity = storage_view.size;    pointer new_data = allocation_tx.Allocate(new_capacity);    construct_data = new_data;  } else {    construct_data = GetInlinedData();  }  ABSL_INTERNAL_TRY {    inlined_vector_internal::ConstructElements(GetAllocPtr(), construct_data,                                               &move_values, storage_view.size);  }  ABSL_INTERNAL_CATCH_ANY {    // Writing to inlined data will trample on the existing state, thus it needs    // to be restored when a construction fails.    SetAllocatedData(storage_view.data, storage_view.capacity);    ABSL_INTERNAL_RETHROW;  }  inlined_vector_internal::DestroyElements(GetAllocPtr(), storage_view.data,                                           storage_view.size);  AllocatorTraits::deallocate(*GetAllocPtr(), storage_view.data,                              storage_view.capacity);  if (allocation_tx.DidAllocate()) {    AcquireAllocation(&allocation_tx);  } else {    UnsetIsAllocated();  }}template <typename T, size_t N, typename A>auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {  using std::swap;  assert(this != other_storage_ptr);  if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {    // Both are allocated, thus we can swap the allocations at the top level.    swap(data_.allocated, other_storage_ptr->data_.allocated);  } else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {    // Both are inlined, thus element-wise swap up to smaller size, then move    // the remaining elements.    Storage* small_ptr = this;    Storage* large_ptr = other_storage_ptr;    if (small_ptr->GetSize() > large_ptr->GetSize()) swap(small_ptr, large_ptr);    for (size_type i = 0; i < small_ptr->GetSize(); ++i) {      swap(small_ptr->GetInlinedData()[i], large_ptr->GetInlinedData()[i]);    }    IteratorValueAdapter<MoveIterator> move_values(        MoveIterator(large_ptr->GetInlinedData() + small_ptr->GetSize()));    inlined_vector_internal::ConstructElements(        large_ptr->GetAllocPtr(),        small_ptr->GetInlinedData() + small_ptr->GetSize(), &move_values,        large_ptr->GetSize() - small_ptr->GetSize());    inlined_vector_internal::DestroyElements(        large_ptr->GetAllocPtr(),        large_ptr->GetInlinedData() + small_ptr->GetSize(),        large_ptr->GetSize() - small_ptr->GetSize());  } else {    // One is allocated and the other is inlined, thus we first move the    // elements from the inlined instance to the inlined space in the allocated    // instance and then we can finish by having the other vector take on the    // allocation.    Storage* allocated_ptr = this;    Storage* inlined_ptr = other_storage_ptr;    if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);    StorageView allocated_storage_view{allocated_ptr->GetAllocatedData(),                                       allocated_ptr->GetSize(),                                       allocated_ptr->GetAllocatedCapacity()};    IteratorValueAdapter<MoveIterator> move_values(        MoveIterator(inlined_ptr->GetInlinedData()));    ABSL_INTERNAL_TRY {      inlined_vector_internal::ConstructElements(          inlined_ptr->GetAllocPtr(), allocated_ptr->GetInlinedData(),          &move_values, inlined_ptr->GetSize());    }    ABSL_INTERNAL_CATCH_ANY {      // Writing to inlined data will trample on the existing state, thus it      // needs to be restored when a construction fails.      allocated_ptr->SetAllocatedData(allocated_storage_view.data,                                      allocated_storage_view.capacity);      ABSL_INTERNAL_RETHROW;    }    inlined_vector_internal::DestroyElements(inlined_ptr->GetAllocPtr(),                                             inlined_ptr->GetInlinedData(),                                             inlined_ptr->GetSize());    inlined_ptr->SetAllocatedData(allocated_storage_view.data,                                  allocated_storage_view.capacity);  }  // All cases swap the size, `is_allocated` boolean and the allocator.  swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());  swap(*GetAllocPtr(), *other_storage_ptr->GetAllocPtr());}}  // namespace inlined_vector_internal}  // namespace absl#endif  // ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_
 |