| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 | 
							- // Copyright 2019 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //     https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- #ifndef ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
 
- #define ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
 
- #include <stdint.h>
 
- #include "absl/base/config.h"
 
- #include "absl/base/macros.h"
 
- namespace absl {
 
- ABSL_NAMESPACE_BEGIN
 
- namespace base_internal {
 
- // ExponentialBiased provides a small and fast random number generator for a
 
- // rounded exponential distribution. This generator manages very little state,
 
- // and imposes no synchronization overhead. This makes it useful in specialized
 
- // scenarios requiring minimum overhead, such as stride based periodic sampling.
 
- //
 
- // ExponentialBiased provides two closely related functions, GetSkipCount() and
 
- // GetStride(), both returning a rounded integer defining a number of events
 
- // required before some event with a given mean probability occurs.
 
- //
 
- // The distribution is useful to generate a random wait time or some periodic
 
- // event with a given mean probability. For example, if an action is supposed to
 
- // happen on average once every 'N' events, then we can get a random 'stride'
 
- // counting down how long before the event to happen. For example, if we'd want
 
- // to sample one in every 1000 'Frobber' calls, our code could look like this:
 
- //
 
- //   Frobber::Frobber() {
 
- //     stride_ = exponential_biased_.GetStride(1000);
 
- //   }
 
- //
 
- //   void Frobber::Frob(int arg) {
 
- //     if (--stride == 0) {
 
- //       SampleFrob(arg);
 
- //       stride_ = exponential_biased_.GetStride(1000);
 
- //     }
 
- //     ...
 
- //   }
 
- //
 
- // The rounding of the return value creates a bias, especially for smaller means
 
- // where the distribution of the fraction is not evenly distributed. We correct
 
- // this bias by tracking the fraction we rounded up or down on each iteration,
 
- // effectively tracking the distance between the cumulative value, and the
 
- // rounded cumulative value. For example, given a mean of 2:
 
- //
 
- //   raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923
 
- //   raw = 0.14624, cumulative = 1.77701, rounded = 2, bias =  0.14624
 
- //   raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805
 
- //   raw = 0.24206, cumulative = 6.95101, rounded = 7, bias =  0.24206
 
- //   etc...
 
- //
 
- // Adjusting with rounding bias is relatively trivial:
 
- //
 
- //    double value = bias_ + exponential_distribution(mean)();
 
- //    double rounded_value = std::round(value);
 
- //    bias_ = value - rounded_value;
 
- //    return rounded_value;
 
- //
 
- // This class is thread-compatible.
 
- class ExponentialBiased {
 
-  public:
 
-   // The number of bits set by NextRandom.
 
-   static constexpr int kPrngNumBits = 48;
 
-   // `GetSkipCount()` returns the number of events to skip before some chosen
 
-   // event happens. For example, randomly tossing a coin, we will on average
 
-   // throw heads once before we get tails. We can simulate random coin tosses
 
-   // using GetSkipCount() as:
 
-   //
 
-   //   ExponentialBiased eb;
 
-   //   for (...) {
 
-   //     int number_of_heads_before_tail = eb.GetSkipCount(1);
 
-   //     for (int flips = 0; flips < number_of_heads_before_tail; ++flips) {
 
-   //       printf("head...");
 
-   //     }
 
-   //     printf("tail\n");
 
-   //   }
 
-   //
 
-   int64_t GetSkipCount(int64_t mean);
 
-   // GetStride() returns the number of events required for a specific event to
 
-   // happen. See the class comments for a usage example. `GetStride()` is
 
-   // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or
 
-   // `GetSkipCount()` depends mostly on what best fits the use case.
 
-   int64_t GetStride(int64_t mean);
 
-   // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]
 
-   //
 
-   // This is public to enable testing.
 
-   static uint64_t NextRandom(uint64_t rnd);
 
-  private:
 
-   void Initialize();
 
-   uint64_t rng_{0};
 
-   double bias_{0};
 
-   bool initialized_{false};
 
- };
 
- // Returns the next prng value.
 
- // pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48
 
- // This is the lrand64 generator.
 
- inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
 
-   const uint64_t prng_mult = uint64_t{0x5DEECE66D};
 
-   const uint64_t prng_add = 0xB;
 
-   const uint64_t prng_mod_power = 48;
 
-   const uint64_t prng_mod_mask =
 
-       ~((~static_cast<uint64_t>(0)) << prng_mod_power);
 
-   return (prng_mult * rnd + prng_add) & prng_mod_mask;
 
- }
 
- }  // namespace base_internal
 
- ABSL_NAMESPACE_END
 
- }  // namespace absl
 
- #endif  // ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
 
 
  |