| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 | 
							- // Copyright 2019 The Abseil Authors.
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //     https://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- #include "absl/base/internal/exponential_biased.h"
 
- #include <stdint.h>
 
- #include <algorithm>
 
- #include <atomic>
 
- #include <cmath>
 
- #include <limits>
 
- #include "absl/base/attributes.h"
 
- #include "absl/base/optimization.h"
 
- namespace absl {
 
- ABSL_NAMESPACE_BEGIN
 
- namespace base_internal {
 
- // The algorithm generates a random number between 0 and 1 and applies the
 
- // inverse cumulative distribution function for an exponential. Specifically:
 
- // Let m be the inverse of the sample period, then the probability
 
- // distribution function is m*exp(-mx) so the CDF is
 
- // p = 1 - exp(-mx), so
 
- // q = 1 - p = exp(-mx)
 
- // log_e(q) = -mx
 
- // -log_e(q)/m = x
 
- // log_2(q) * (-log_e(2) * 1/m) = x
 
- // In the code, q is actually in the range 1 to 2**26, hence the -26 below
 
- int64_t ExponentialBiased::GetSkipCount(int64_t mean) {
 
-   if (ABSL_PREDICT_FALSE(!initialized_)) {
 
-     Initialize();
 
-   }
 
-   uint64_t rng = NextRandom(rng_);
 
-   rng_ = rng;
 
-   // Take the top 26 bits as the random number
 
-   // (This plus the 1<<58 sampling bound give a max possible step of
 
-   // 5194297183973780480 bytes.)
 
-   // The uint32_t cast is to prevent a (hard-to-reproduce) NAN
 
-   // under piii debug for some binaries.
 
-   double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;
 
-   // Put the computed p-value through the CDF of a geometric.
 
-   double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean);
 
-   // Very large values of interval overflow int64_t. To avoid that, we will
 
-   // cheat and clamp any huge values to (int64_t max)/2. This is a potential
 
-   // source of bias, but the mean would need to be such a large value that it's
 
-   // not likely to come up. For example, with a mean of 1e18, the probability of
 
-   // hitting this condition is about 1/1000. For a mean of 1e17, standard
 
-   // calculators claim that this event won't happen.
 
-   if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
 
-     // Assume huge values are bias neutral, retain bias for next call.
 
-     return std::numeric_limits<int64_t>::max() / 2;
 
-   }
 
-   double value = std::round(interval);
 
-   bias_ = interval - value;
 
-   return value;
 
- }
 
- int64_t ExponentialBiased::GetStride(int64_t mean) {
 
-   return GetSkipCount(mean - 1) + 1;
 
- }
 
- void ExponentialBiased::Initialize() {
 
-   // We don't get well distributed numbers from `this` so we call NextRandom() a
 
-   // bunch to mush the bits around. We use a global_rand to handle the case
 
-   // where the same thread (by memory address) gets created and destroyed
 
-   // repeatedly.
 
-   ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
 
-   uint64_t r = reinterpret_cast<uint64_t>(this) +
 
-                global_rand.fetch_add(1, std::memory_order_relaxed);
 
-   for (int i = 0; i < 20; ++i) {
 
-     r = NextRandom(r);
 
-   }
 
-   rng_ = r;
 
-   initialized_ = true;
 
- }
 
- }  // namespace base_internal
 
- ABSL_NAMESPACE_END
 
- }  // namespace absl
 
 
  |