| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: container.h// -----------------------------------------------------------------------------//// This header file provides Container-based versions of algorithmic functions// within the C++ standard library. The following standard library sets of// functions are covered within this file:////   * Algorithmic <iterator> functions//   * Algorithmic <numeric> functions//   * <algorithm> functions//// The standard library functions operate on iterator ranges; the functions// within this API operate on containers, though many return iterator ranges.//// All functions within this API are named with a `c_` prefix. Calls such as// `absl::c_xx(container, ...) are equivalent to std:: functions such as// `std::xx(std::begin(cont), std::end(cont), ...)`. Functions that act on// iterators but not conceptually on iterator ranges (e.g. `std::iter_swap`)// have no equivalent here.//// For template parameter and variable naming, `C` indicates the container type// to which the function is applied, `Pred` indicates the predicate object type// to be used by the function and `T` indicates the applicable element type.#ifndef ABSL_ALGORITHM_CONTAINER_H_#define ABSL_ALGORITHM_CONTAINER_H_#include <algorithm>#include <cassert>#include <iterator>#include <numeric>#include <type_traits>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>#include "absl/algorithm/algorithm.h"#include "absl/base/macros.h"#include "absl/meta/type_traits.h"namespace absl {ABSL_NAMESPACE_BEGINnamespace container_algorithm_internal {// NOTE: it is important to defer to ADL lookup for building with C++ modules,// especially for headers like <valarray> which are not visible from this file// but specialize std::begin and std::end.using std::begin;using std::end;// The type of the iterator given by begin(c) (possibly std::begin(c)).// ContainerIter<const vector<T>> gives vector<T>::const_iterator,// while ContainerIter<vector<T>> gives vector<T>::iterator.template <typename C>using ContainerIter = decltype(begin(std::declval<C&>()));// An MSVC bug involving template parameter substitution requires us to use// decltype() here instead of just std::pair.template <typename C1, typename C2>using ContainerIterPairType =    decltype(std::make_pair(ContainerIter<C1>(), ContainerIter<C2>()));template <typename C>using ContainerDifferenceType =    decltype(std::distance(std::declval<ContainerIter<C>>(),                           std::declval<ContainerIter<C>>()));template <typename C>using ContainerPointerType =    typename std::iterator_traits<ContainerIter<C>>::pointer;// container_algorithm_internal::c_begin and// container_algorithm_internal::c_end are abbreviations for proper ADL// lookup of std::begin and std::end, i.e.//   using std::begin;//   using std::end;//   std::foo(begin(c), end(c));// becomes//   std::foo(container_algorithm_internal::begin(c),//            container_algorithm_internal::end(c));// These are meant for internal use only.template <typename C>ContainerIter<C> c_begin(C& c) { return begin(c); }template <typename C>ContainerIter<C> c_end(C& c) { return end(c); }template <typename T>struct IsUnorderedContainer : std::false_type {};template <class Key, class T, class Hash, class KeyEqual, class Allocator>struct IsUnorderedContainer<    std::unordered_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};template <class Key, class Hash, class KeyEqual, class Allocator>struct IsUnorderedContainer<std::unordered_set<Key, Hash, KeyEqual, Allocator>>    : std::true_type {};// container_algorithm_internal::c_size. It is meant for internal use only.template <class C>auto c_size(C& c) -> decltype(c.size()) {  return c.size();}template <class T, std::size_t N>constexpr std::size_t c_size(T (&)[N]) {  return N;}}  // namespace container_algorithm_internal// PUBLIC API//------------------------------------------------------------------------------// Abseil algorithm.h functions//------------------------------------------------------------------------------// c_linear_search()//// Container-based version of absl::linear_search() for performing a linear// search within a container.template <typename C, typename EqualityComparable>bool c_linear_search(const C& c, EqualityComparable&& value) {  return linear_search(container_algorithm_internal::c_begin(c),                       container_algorithm_internal::c_end(c),                       std::forward<EqualityComparable>(value));}//------------------------------------------------------------------------------// <iterator> algorithms//------------------------------------------------------------------------------// c_distance()//// Container-based version of the <iterator> `std::distance()` function to// return the number of elements within a container.template <typename C>container_algorithm_internal::ContainerDifferenceType<const C> c_distance(    const C& c) {  return std::distance(container_algorithm_internal::c_begin(c),                       container_algorithm_internal::c_end(c));}//------------------------------------------------------------------------------// <algorithm> Non-modifying sequence operations//------------------------------------------------------------------------------// c_all_of()//// Container-based version of the <algorithm> `std::all_of()` function to// test a condition on all elements within a container.template <typename C, typename Pred>bool c_all_of(const C& c, Pred&& pred) {  return std::all_of(container_algorithm_internal::c_begin(c),                     container_algorithm_internal::c_end(c),                     std::forward<Pred>(pred));}// c_any_of()//// Container-based version of the <algorithm> `std::any_of()` function to// test if any element in a container fulfills a condition.template <typename C, typename Pred>bool c_any_of(const C& c, Pred&& pred) {  return std::any_of(container_algorithm_internal::c_begin(c),                     container_algorithm_internal::c_end(c),                     std::forward<Pred>(pred));}// c_none_of()//// Container-based version of the <algorithm> `std::none_of()` function to// test if no elements in a container fulfill a condition.template <typename C, typename Pred>bool c_none_of(const C& c, Pred&& pred) {  return std::none_of(container_algorithm_internal::c_begin(c),                      container_algorithm_internal::c_end(c),                      std::forward<Pred>(pred));}// c_for_each()//// Container-based version of the <algorithm> `std::for_each()` function to// apply a function to a container's elements.template <typename C, typename Function>decay_t<Function> c_for_each(C&& c, Function&& f) {  return std::for_each(container_algorithm_internal::c_begin(c),                       container_algorithm_internal::c_end(c),                       std::forward<Function>(f));}// c_find()//// Container-based version of the <algorithm> `std::find()` function to find// the first element containing the passed value within a container value.template <typename C, typename T>container_algorithm_internal::ContainerIter<C> c_find(C& c, T&& value) {  return std::find(container_algorithm_internal::c_begin(c),                   container_algorithm_internal::c_end(c),                   std::forward<T>(value));}// c_find_if()//// Container-based version of the <algorithm> `std::find_if()` function to find// the first element in a container matching the given condition.template <typename C, typename Pred>container_algorithm_internal::ContainerIter<C> c_find_if(C& c, Pred&& pred) {  return std::find_if(container_algorithm_internal::c_begin(c),                      container_algorithm_internal::c_end(c),                      std::forward<Pred>(pred));}// c_find_if_not()//// Container-based version of the <algorithm> `std::find_if_not()` function to// find the first element in a container not matching the given condition.template <typename C, typename Pred>container_algorithm_internal::ContainerIter<C> c_find_if_not(C& c,                                                             Pred&& pred) {  return std::find_if_not(container_algorithm_internal::c_begin(c),                          container_algorithm_internal::c_end(c),                          std::forward<Pred>(pred));}// c_find_end()//// Container-based version of the <algorithm> `std::find_end()` function to// find the last subsequence within a container.template <typename Sequence1, typename Sequence2>container_algorithm_internal::ContainerIter<Sequence1> c_find_end(    Sequence1& sequence, Sequence2& subsequence) {  return std::find_end(container_algorithm_internal::c_begin(sequence),                       container_algorithm_internal::c_end(sequence),                       container_algorithm_internal::c_begin(subsequence),                       container_algorithm_internal::c_end(subsequence));}// Overload of c_find_end() for using a predicate evaluation other than `==` as// the function's test condition.template <typename Sequence1, typename Sequence2, typename BinaryPredicate>container_algorithm_internal::ContainerIter<Sequence1> c_find_end(    Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {  return std::find_end(container_algorithm_internal::c_begin(sequence),                       container_algorithm_internal::c_end(sequence),                       container_algorithm_internal::c_begin(subsequence),                       container_algorithm_internal::c_end(subsequence),                       std::forward<BinaryPredicate>(pred));}// c_find_first_of()//// Container-based version of the <algorithm> `std::find_first_of()` function to// find the first element within the container that is also within the options// container.template <typename C1, typename C2>container_algorithm_internal::ContainerIter<C1> c_find_first_of(C1& container,                                                                C2& options) {  return std::find_first_of(container_algorithm_internal::c_begin(container),                            container_algorithm_internal::c_end(container),                            container_algorithm_internal::c_begin(options),                            container_algorithm_internal::c_end(options));}// Overload of c_find_first_of() for using a predicate evaluation other than// `==` as the function's test condition.template <typename C1, typename C2, typename BinaryPredicate>container_algorithm_internal::ContainerIter<C1> c_find_first_of(    C1& container, C2& options, BinaryPredicate&& pred) {  return std::find_first_of(container_algorithm_internal::c_begin(container),                            container_algorithm_internal::c_end(container),                            container_algorithm_internal::c_begin(options),                            container_algorithm_internal::c_end(options),                            std::forward<BinaryPredicate>(pred));}// c_adjacent_find()//// Container-based version of the <algorithm> `std::adjacent_find()` function to// find equal adjacent elements within a container.template <typename Sequence>container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(    Sequence& sequence) {  return std::adjacent_find(container_algorithm_internal::c_begin(sequence),                            container_algorithm_internal::c_end(sequence));}// Overload of c_adjacent_find() for using a predicate evaluation other than// `==` as the function's test condition.template <typename Sequence, typename BinaryPredicate>container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(    Sequence& sequence, BinaryPredicate&& pred) {  return std::adjacent_find(container_algorithm_internal::c_begin(sequence),                            container_algorithm_internal::c_end(sequence),                            std::forward<BinaryPredicate>(pred));}// c_count()//// Container-based version of the <algorithm> `std::count()` function to count// values that match within a container.template <typename C, typename T>container_algorithm_internal::ContainerDifferenceType<const C> c_count(    const C& c, T&& value) {  return std::count(container_algorithm_internal::c_begin(c),                    container_algorithm_internal::c_end(c),                    std::forward<T>(value));}// c_count_if()//// Container-based version of the <algorithm> `std::count_if()` function to// count values matching a condition within a container.template <typename C, typename Pred>container_algorithm_internal::ContainerDifferenceType<const C> c_count_if(    const C& c, Pred&& pred) {  return std::count_if(container_algorithm_internal::c_begin(c),                       container_algorithm_internal::c_end(c),                       std::forward<Pred>(pred));}// c_mismatch()//// Container-based version of the <algorithm> `std::mismatch()` function to// return the first element where two ordered containers differ. Applies `==` to// the first N elements of `c1` and `c2`, where N = min(size(c1), size(c2)).template <typename C1, typename C2>container_algorithm_internal::ContainerIterPairType<C1, C2>c_mismatch(C1& c1, C2& c2) {  auto first1 = container_algorithm_internal::c_begin(c1);  auto last1 = container_algorithm_internal::c_end(c1);  auto first2 = container_algorithm_internal::c_begin(c2);  auto last2 = container_algorithm_internal::c_end(c2);  for (; first1 != last1 && first2 != last2; ++first1, (void)++first2) {    // Negates equality because Cpp17EqualityComparable doesn't require clients    // to overload both `operator==` and `operator!=`.    if (!(*first1 == *first2)) {      break;    }  }  return std::make_pair(first1, first2);}// Overload of c_mismatch() for using a predicate evaluation other than `==` as// the function's test condition. Applies `pred`to the first N elements of `c1`// and `c2`, where N = min(size(c1), size(c2)).template <typename C1, typename C2, typename BinaryPredicate>container_algorithm_internal::ContainerIterPairType<C1, C2>c_mismatch(C1& c1, C2& c2, BinaryPredicate pred) {  auto first1 = container_algorithm_internal::c_begin(c1);  auto last1 = container_algorithm_internal::c_end(c1);  auto first2 = container_algorithm_internal::c_begin(c2);  auto last2 = container_algorithm_internal::c_end(c2);  for (; first1 != last1 && first2 != last2; ++first1, (void)++first2) {    if (!pred(*first1, *first2)) {      break;    }  }  return std::make_pair(first1, first2);}// c_equal()//// Container-based version of the <algorithm> `std::equal()` function to// test whether two containers are equal.//// NOTE: the semantics of c_equal() are slightly different than those of// equal(): while the latter iterates over the second container only up to the// size of the first container, c_equal() also checks whether the container// sizes are equal.  This better matches expectations about c_equal() based on// its signature.//// Example://   vector v1 = <1, 2, 3>;//   vector v2 = <1, 2, 3, 4>;//   equal(std::begin(v1), std::end(v1), std::begin(v2)) returns true//   c_equal(v1, v2) returns falsetemplate <typename C1, typename C2>bool c_equal(const C1& c1, const C2& c2) {  return ((container_algorithm_internal::c_size(c1) ==           container_algorithm_internal::c_size(c2)) &&          std::equal(container_algorithm_internal::c_begin(c1),                     container_algorithm_internal::c_end(c1),                     container_algorithm_internal::c_begin(c2)));}// Overload of c_equal() for using a predicate evaluation other than `==` as// the function's test condition.template <typename C1, typename C2, typename BinaryPredicate>bool c_equal(const C1& c1, const C2& c2, BinaryPredicate&& pred) {  return ((container_algorithm_internal::c_size(c1) ==           container_algorithm_internal::c_size(c2)) &&          std::equal(container_algorithm_internal::c_begin(c1),                     container_algorithm_internal::c_end(c1),                     container_algorithm_internal::c_begin(c2),                     std::forward<BinaryPredicate>(pred)));}// c_is_permutation()//// Container-based version of the <algorithm> `std::is_permutation()` function// to test whether a container is a permutation of another.template <typename C1, typename C2>bool c_is_permutation(const C1& c1, const C2& c2) {  using std::begin;  using std::end;  return c1.size() == c2.size() &&         std::is_permutation(begin(c1), end(c1), begin(c2));}// Overload of c_is_permutation() for using a predicate evaluation other than// `==` as the function's test condition.template <typename C1, typename C2, typename BinaryPredicate>bool c_is_permutation(const C1& c1, const C2& c2, BinaryPredicate&& pred) {  using std::begin;  using std::end;  return c1.size() == c2.size() &&         std::is_permutation(begin(c1), end(c1), begin(c2),                             std::forward<BinaryPredicate>(pred));}// c_search()//// Container-based version of the <algorithm> `std::search()` function to search// a container for a subsequence.template <typename Sequence1, typename Sequence2>container_algorithm_internal::ContainerIter<Sequence1> c_search(    Sequence1& sequence, Sequence2& subsequence) {  return std::search(container_algorithm_internal::c_begin(sequence),                     container_algorithm_internal::c_end(sequence),                     container_algorithm_internal::c_begin(subsequence),                     container_algorithm_internal::c_end(subsequence));}// Overload of c_search() for using a predicate evaluation other than// `==` as the function's test condition.template <typename Sequence1, typename Sequence2, typename BinaryPredicate>container_algorithm_internal::ContainerIter<Sequence1> c_search(    Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {  return std::search(container_algorithm_internal::c_begin(sequence),                     container_algorithm_internal::c_end(sequence),                     container_algorithm_internal::c_begin(subsequence),                     container_algorithm_internal::c_end(subsequence),                     std::forward<BinaryPredicate>(pred));}// c_search_n()//// Container-based version of the <algorithm> `std::search_n()` function to// search a container for the first sequence of N elements.template <typename Sequence, typename Size, typename T>container_algorithm_internal::ContainerIter<Sequence> c_search_n(    Sequence& sequence, Size count, T&& value) {  return std::search_n(container_algorithm_internal::c_begin(sequence),                       container_algorithm_internal::c_end(sequence), count,                       std::forward<T>(value));}// Overload of c_search_n() for using a predicate evaluation other than// `==` as the function's test condition.template <typename Sequence, typename Size, typename T,          typename BinaryPredicate>container_algorithm_internal::ContainerIter<Sequence> c_search_n(    Sequence& sequence, Size count, T&& value, BinaryPredicate&& pred) {  return std::search_n(container_algorithm_internal::c_begin(sequence),                       container_algorithm_internal::c_end(sequence), count,                       std::forward<T>(value),                       std::forward<BinaryPredicate>(pred));}//------------------------------------------------------------------------------// <algorithm> Modifying sequence operations//------------------------------------------------------------------------------// c_copy()//// Container-based version of the <algorithm> `std::copy()` function to copy a// container's elements into an iterator.template <typename InputSequence, typename OutputIterator>OutputIterator c_copy(const InputSequence& input, OutputIterator output) {  return std::copy(container_algorithm_internal::c_begin(input),                   container_algorithm_internal::c_end(input), output);}// c_copy_n()//// Container-based version of the <algorithm> `std::copy_n()` function to copy a// container's first N elements into an iterator.template <typename C, typename Size, typename OutputIterator>OutputIterator c_copy_n(const C& input, Size n, OutputIterator output) {  return std::copy_n(container_algorithm_internal::c_begin(input), n, output);}// c_copy_if()//// Container-based version of the <algorithm> `std::copy_if()` function to copy// a container's elements satisfying some condition into an iterator.template <typename InputSequence, typename OutputIterator, typename Pred>OutputIterator c_copy_if(const InputSequence& input, OutputIterator output,                         Pred&& pred) {  return std::copy_if(container_algorithm_internal::c_begin(input),                      container_algorithm_internal::c_end(input), output,                      std::forward<Pred>(pred));}// c_copy_backward()//// Container-based version of the <algorithm> `std::copy_backward()` function to// copy a container's elements in reverse order into an iterator.template <typename C, typename BidirectionalIterator>BidirectionalIterator c_copy_backward(const C& src,                                      BidirectionalIterator dest) {  return std::copy_backward(container_algorithm_internal::c_begin(src),                            container_algorithm_internal::c_end(src), dest);}// c_move()//// Container-based version of the <algorithm> `std::move()` function to move// a container's elements into an iterator.template <typename C, typename OutputIterator>OutputIterator c_move(C&& src, OutputIterator dest) {  return std::move(container_algorithm_internal::c_begin(src),                   container_algorithm_internal::c_end(src), dest);}// c_move_backward()//// Container-based version of the <algorithm> `std::move_backward()` function to// move a container's elements into an iterator in reverse order.template <typename C, typename BidirectionalIterator>BidirectionalIterator c_move_backward(C&& src, BidirectionalIterator dest) {  return std::move_backward(container_algorithm_internal::c_begin(src),                            container_algorithm_internal::c_end(src), dest);}// c_swap_ranges()//// Container-based version of the <algorithm> `std::swap_ranges()` function to// swap a container's elements with another container's elements. Swaps the// first N elements of `c1` and `c2`, where N = min(size(c1), size(c2)).template <typename C1, typename C2>container_algorithm_internal::ContainerIter<C2> c_swap_ranges(C1& c1, C2& c2) {  auto first1 = container_algorithm_internal::c_begin(c1);  auto last1 = container_algorithm_internal::c_end(c1);  auto first2 = container_algorithm_internal::c_begin(c2);  auto last2 = container_algorithm_internal::c_end(c2);  using std::swap;  for (; first1 != last1 && first2 != last2; ++first1, (void)++first2) {    swap(*first1, *first2);  }  return first2;}// c_transform()//// Container-based version of the <algorithm> `std::transform()` function to// transform a container's elements using the unary operation, storing the// result in an iterator pointing to the last transformed element in the output// range.template <typename InputSequence, typename OutputIterator, typename UnaryOp>OutputIterator c_transform(const InputSequence& input, OutputIterator output,                           UnaryOp&& unary_op) {  return std::transform(container_algorithm_internal::c_begin(input),                        container_algorithm_internal::c_end(input), output,                        std::forward<UnaryOp>(unary_op));}// Overload of c_transform() for performing a transformation using a binary// predicate. Applies `binary_op` to the first N elements of `c1` and `c2`,// where N = min(size(c1), size(c2)).template <typename InputSequence1, typename InputSequence2,          typename OutputIterator, typename BinaryOp>OutputIterator c_transform(const InputSequence1& input1,                           const InputSequence2& input2, OutputIterator output,                           BinaryOp&& binary_op) {  auto first1 = container_algorithm_internal::c_begin(input1);  auto last1 = container_algorithm_internal::c_end(input1);  auto first2 = container_algorithm_internal::c_begin(input2);  auto last2 = container_algorithm_internal::c_end(input2);  for (; first1 != last1 && first2 != last2;       ++first1, (void)++first2, ++output) {    *output = binary_op(*first1, *first2);  }  return output;}// c_replace()//// Container-based version of the <algorithm> `std::replace()` function to// replace a container's elements of some value with a new value. The container// is modified in place.template <typename Sequence, typename T>void c_replace(Sequence& sequence, const T& old_value, const T& new_value) {  std::replace(container_algorithm_internal::c_begin(sequence),               container_algorithm_internal::c_end(sequence), old_value,               new_value);}// c_replace_if()//// Container-based version of the <algorithm> `std::replace_if()` function to// replace a container's elements of some value with a new value based on some// condition. The container is modified in place.template <typename C, typename Pred, typename T>void c_replace_if(C& c, Pred&& pred, T&& new_value) {  std::replace_if(container_algorithm_internal::c_begin(c),                  container_algorithm_internal::c_end(c),                  std::forward<Pred>(pred), std::forward<T>(new_value));}// c_replace_copy()//// Container-based version of the <algorithm> `std::replace_copy()` function to// replace a container's elements of some value with a new value  and return the// results within an iterator.template <typename C, typename OutputIterator, typename T>OutputIterator c_replace_copy(const C& c, OutputIterator result, T&& old_value,                              T&& new_value) {  return std::replace_copy(container_algorithm_internal::c_begin(c),                           container_algorithm_internal::c_end(c), result,                           std::forward<T>(old_value),                           std::forward<T>(new_value));}// c_replace_copy_if()//// Container-based version of the <algorithm> `std::replace_copy_if()` function// to replace a container's elements of some value with a new value based on// some condition, and return the results within an iterator.template <typename C, typename OutputIterator, typename Pred, typename T>OutputIterator c_replace_copy_if(const C& c, OutputIterator result, Pred&& pred,                                 T&& new_value) {  return std::replace_copy_if(container_algorithm_internal::c_begin(c),                              container_algorithm_internal::c_end(c), result,                              std::forward<Pred>(pred),                              std::forward<T>(new_value));}// c_fill()//// Container-based version of the <algorithm> `std::fill()` function to fill a// container with some value.template <typename C, typename T>void c_fill(C& c, T&& value) {  std::fill(container_algorithm_internal::c_begin(c),            container_algorithm_internal::c_end(c), std::forward<T>(value));}// c_fill_n()//// Container-based version of the <algorithm> `std::fill_n()` function to fill// the first N elements in a container with some value.template <typename C, typename Size, typename T>void c_fill_n(C& c, Size n, T&& value) {  std::fill_n(container_algorithm_internal::c_begin(c), n,              std::forward<T>(value));}// c_generate()//// Container-based version of the <algorithm> `std::generate()` function to// assign a container's elements to the values provided by the given generator.template <typename C, typename Generator>void c_generate(C& c, Generator&& gen) {  std::generate(container_algorithm_internal::c_begin(c),                container_algorithm_internal::c_end(c),                std::forward<Generator>(gen));}// c_generate_n()//// Container-based version of the <algorithm> `std::generate_n()` function to// assign a container's first N elements to the values provided by the given// generator.template <typename C, typename Size, typename Generator>container_algorithm_internal::ContainerIter<C> c_generate_n(C& c, Size n,                                                            Generator&& gen) {  return std::generate_n(container_algorithm_internal::c_begin(c), n,                         std::forward<Generator>(gen));}// Note: `c_xx()` <algorithm> container versions for `remove()`, `remove_if()`,// and `unique()` are omitted, because it's not clear whether or not such// functions should call erase on their supplied sequences afterwards. Either// behavior would be surprising for a different set of users.// c_remove_copy()//// Container-based version of the <algorithm> `std::remove_copy()` function to// copy a container's elements while removing any elements matching the given// `value`.template <typename C, typename OutputIterator, typename T>OutputIterator c_remove_copy(const C& c, OutputIterator result, T&& value) {  return std::remove_copy(container_algorithm_internal::c_begin(c),                          container_algorithm_internal::c_end(c), result,                          std::forward<T>(value));}// c_remove_copy_if()//// Container-based version of the <algorithm> `std::remove_copy_if()` function// to copy a container's elements while removing any elements matching the given// condition.template <typename C, typename OutputIterator, typename Pred>OutputIterator c_remove_copy_if(const C& c, OutputIterator result,                                Pred&& pred) {  return std::remove_copy_if(container_algorithm_internal::c_begin(c),                             container_algorithm_internal::c_end(c), result,                             std::forward<Pred>(pred));}// c_unique_copy()//// Container-based version of the <algorithm> `std::unique_copy()` function to// copy a container's elements while removing any elements containing duplicate// values.template <typename C, typename OutputIterator>OutputIterator c_unique_copy(const C& c, OutputIterator result) {  return std::unique_copy(container_algorithm_internal::c_begin(c),                          container_algorithm_internal::c_end(c), result);}// Overload of c_unique_copy() for using a predicate evaluation other than// `==` for comparing uniqueness of the element values.template <typename C, typename OutputIterator, typename BinaryPredicate>OutputIterator c_unique_copy(const C& c, OutputIterator result,                             BinaryPredicate&& pred) {  return std::unique_copy(container_algorithm_internal::c_begin(c),                          container_algorithm_internal::c_end(c), result,                          std::forward<BinaryPredicate>(pred));}// c_reverse()//// Container-based version of the <algorithm> `std::reverse()` function to// reverse a container's elements.template <typename Sequence>void c_reverse(Sequence& sequence) {  std::reverse(container_algorithm_internal::c_begin(sequence),               container_algorithm_internal::c_end(sequence));}// c_reverse_copy()//// Container-based version of the <algorithm> `std::reverse()` function to// reverse a container's elements and write them to an iterator range.template <typename C, typename OutputIterator>OutputIterator c_reverse_copy(const C& sequence, OutputIterator result) {  return std::reverse_copy(container_algorithm_internal::c_begin(sequence),                           container_algorithm_internal::c_end(sequence),                           result);}// c_rotate()//// Container-based version of the <algorithm> `std::rotate()` function to// shift a container's elements leftward such that the `middle` element becomes// the first element in the container.template <typename C,          typename Iterator = container_algorithm_internal::ContainerIter<C>>Iterator c_rotate(C& sequence, Iterator middle) {  return absl::rotate(container_algorithm_internal::c_begin(sequence), middle,                      container_algorithm_internal::c_end(sequence));}// c_rotate_copy()//// Container-based version of the <algorithm> `std::rotate_copy()` function to// shift a container's elements leftward such that the `middle` element becomes// the first element in a new iterator range.template <typename C, typename OutputIterator>OutputIterator c_rotate_copy(    const C& sequence,    container_algorithm_internal::ContainerIter<const C> middle,    OutputIterator result) {  return std::rotate_copy(container_algorithm_internal::c_begin(sequence),                          middle, container_algorithm_internal::c_end(sequence),                          result);}// c_shuffle()//// Container-based version of the <algorithm> `std::shuffle()` function to// randomly shuffle elements within the container using a `gen()` uniform random// number generator.template <typename RandomAccessContainer, typename UniformRandomBitGenerator>void c_shuffle(RandomAccessContainer& c, UniformRandomBitGenerator&& gen) {  std::shuffle(container_algorithm_internal::c_begin(c),               container_algorithm_internal::c_end(c),               std::forward<UniformRandomBitGenerator>(gen));}//------------------------------------------------------------------------------// <algorithm> Partition functions//------------------------------------------------------------------------------// c_is_partitioned()//// Container-based version of the <algorithm> `std::is_partitioned()` function// to test whether all elements in the container for which `pred` returns `true`// precede those for which `pred` is `false`.template <typename C, typename Pred>bool c_is_partitioned(const C& c, Pred&& pred) {  return std::is_partitioned(container_algorithm_internal::c_begin(c),                             container_algorithm_internal::c_end(c),                             std::forward<Pred>(pred));}// c_partition()//// Container-based version of the <algorithm> `std::partition()` function// to rearrange all elements in a container in such a way that all elements for// which `pred` returns `true` precede all those for which it returns `false`,// returning an iterator to the first element of the second group.template <typename C, typename Pred>container_algorithm_internal::ContainerIter<C> c_partition(C& c, Pred&& pred) {  return std::partition(container_algorithm_internal::c_begin(c),                        container_algorithm_internal::c_end(c),                        std::forward<Pred>(pred));}// c_stable_partition()//// Container-based version of the <algorithm> `std::stable_partition()` function// to rearrange all elements in a container in such a way that all elements for// which `pred` returns `true` precede all those for which it returns `false`,// preserving the relative ordering between the two groups. The function returns// an iterator to the first element of the second group.template <typename C, typename Pred>container_algorithm_internal::ContainerIter<C> c_stable_partition(C& c,                                                                  Pred&& pred) {  return std::stable_partition(container_algorithm_internal::c_begin(c),                               container_algorithm_internal::c_end(c),                               std::forward<Pred>(pred));}// c_partition_copy()//// Container-based version of the <algorithm> `std::partition_copy()` function// to partition a container's elements and return them into two iterators: one// for which `pred` returns `true`, and one for which `pred` returns `false.`template <typename C, typename OutputIterator1, typename OutputIterator2,          typename Pred>std::pair<OutputIterator1, OutputIterator2> c_partition_copy(    const C& c, OutputIterator1 out_true, OutputIterator2 out_false,    Pred&& pred) {  return std::partition_copy(container_algorithm_internal::c_begin(c),                             container_algorithm_internal::c_end(c), out_true,                             out_false, std::forward<Pred>(pred));}// c_partition_point()//// Container-based version of the <algorithm> `std::partition_point()` function// to return the first element of an already partitioned container for which// the given `pred` is not `true`.template <typename C, typename Pred>container_algorithm_internal::ContainerIter<C> c_partition_point(C& c,                                                                 Pred&& pred) {  return std::partition_point(container_algorithm_internal::c_begin(c),                              container_algorithm_internal::c_end(c),                              std::forward<Pred>(pred));}//------------------------------------------------------------------------------// <algorithm> Sorting functions//------------------------------------------------------------------------------// c_sort()//// Container-based version of the <algorithm> `std::sort()` function// to sort elements in ascending order of their values.template <typename C>void c_sort(C& c) {  std::sort(container_algorithm_internal::c_begin(c),            container_algorithm_internal::c_end(c));}// Overload of c_sort() for performing a `comp` comparison other than the// default `operator<`.template <typename C, typename Compare>void c_sort(C& c, Compare&& comp) {  std::sort(container_algorithm_internal::c_begin(c),            container_algorithm_internal::c_end(c),            std::forward<Compare>(comp));}// c_stable_sort()//// Container-based version of the <algorithm> `std::stable_sort()` function// to sort elements in ascending order of their values, preserving the order// of equivalents.template <typename C>void c_stable_sort(C& c) {  std::stable_sort(container_algorithm_internal::c_begin(c),                   container_algorithm_internal::c_end(c));}// Overload of c_stable_sort() for performing a `comp` comparison other than the// default `operator<`.template <typename C, typename Compare>void c_stable_sort(C& c, Compare&& comp) {  std::stable_sort(container_algorithm_internal::c_begin(c),                   container_algorithm_internal::c_end(c),                   std::forward<Compare>(comp));}// c_is_sorted()//// Container-based version of the <algorithm> `std::is_sorted()` function// to evaluate whether the given container is sorted in ascending order.template <typename C>bool c_is_sorted(const C& c) {  return std::is_sorted(container_algorithm_internal::c_begin(c),                        container_algorithm_internal::c_end(c));}// c_is_sorted() overload for performing a `comp` comparison other than the// default `operator<`.template <typename C, typename Compare>bool c_is_sorted(const C& c, Compare&& comp) {  return std::is_sorted(container_algorithm_internal::c_begin(c),                        container_algorithm_internal::c_end(c),                        std::forward<Compare>(comp));}// c_partial_sort()//// Container-based version of the <algorithm> `std::partial_sort()` function// to rearrange elements within a container such that elements before `middle`// are sorted in ascending order.template <typename RandomAccessContainer>void c_partial_sort(    RandomAccessContainer& sequence,    container_algorithm_internal::ContainerIter<RandomAccessContainer> middle) {  std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,                    container_algorithm_internal::c_end(sequence));}// Overload of c_partial_sort() for performing a `comp` comparison other than// the default `operator<`.template <typename RandomAccessContainer, typename Compare>void c_partial_sort(    RandomAccessContainer& sequence,    container_algorithm_internal::ContainerIter<RandomAccessContainer> middle,    Compare&& comp) {  std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,                    container_algorithm_internal::c_end(sequence),                    std::forward<Compare>(comp));}// c_partial_sort_copy()//// Container-based version of the <algorithm> `std::partial_sort_copy()`// function to sort the elements in the given range `result` within the larger// `sequence` in ascending order (and using `result` as the output parameter).// At most min(result.last - result.first, sequence.last - sequence.first)// elements from the sequence will be stored in the result.template <typename C, typename RandomAccessContainer>container_algorithm_internal::ContainerIter<RandomAccessContainer>c_partial_sort_copy(const C& sequence, RandomAccessContainer& result) {  return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),                                container_algorithm_internal::c_end(sequence),                                container_algorithm_internal::c_begin(result),                                container_algorithm_internal::c_end(result));}// Overload of c_partial_sort_copy() for performing a `comp` comparison other// than the default `operator<`.template <typename C, typename RandomAccessContainer, typename Compare>container_algorithm_internal::ContainerIter<RandomAccessContainer>c_partial_sort_copy(const C& sequence, RandomAccessContainer& result,                    Compare&& comp) {  return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),                                container_algorithm_internal::c_end(sequence),                                container_algorithm_internal::c_begin(result),                                container_algorithm_internal::c_end(result),                                std::forward<Compare>(comp));}// c_is_sorted_until()//// Container-based version of the <algorithm> `std::is_sorted_until()` function// to return the first element within a container that is not sorted in// ascending order as an iterator.template <typename C>container_algorithm_internal::ContainerIter<C> c_is_sorted_until(C& c) {  return std::is_sorted_until(container_algorithm_internal::c_begin(c),                              container_algorithm_internal::c_end(c));}// Overload of c_is_sorted_until() for performing a `comp` comparison other than// the default `operator<`.template <typename C, typename Compare>container_algorithm_internal::ContainerIter<C> c_is_sorted_until(    C& c, Compare&& comp) {  return std::is_sorted_until(container_algorithm_internal::c_begin(c),                              container_algorithm_internal::c_end(c),                              std::forward<Compare>(comp));}// c_nth_element()//// Container-based version of the <algorithm> `std::nth_element()` function// to rearrange the elements within a container such that the `nth` element// would be in that position in an ordered sequence; other elements may be in// any order, except that all preceding `nth` will be less than that element,// and all following `nth` will be greater than that element.template <typename RandomAccessContainer>void c_nth_element(    RandomAccessContainer& sequence,    container_algorithm_internal::ContainerIter<RandomAccessContainer> nth) {  std::nth_element(container_algorithm_internal::c_begin(sequence), nth,                   container_algorithm_internal::c_end(sequence));}// Overload of c_nth_element() for performing a `comp` comparison other than// the default `operator<`.template <typename RandomAccessContainer, typename Compare>void c_nth_element(    RandomAccessContainer& sequence,    container_algorithm_internal::ContainerIter<RandomAccessContainer> nth,    Compare&& comp) {  std::nth_element(container_algorithm_internal::c_begin(sequence), nth,                   container_algorithm_internal::c_end(sequence),                   std::forward<Compare>(comp));}//------------------------------------------------------------------------------// <algorithm> Binary Search//------------------------------------------------------------------------------// c_lower_bound()//// Container-based version of the <algorithm> `std::lower_bound()` function// to return an iterator pointing to the first element in a sorted container// which does not compare less than `value`.template <typename Sequence, typename T>container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(    Sequence& sequence, T&& value) {  return std::lower_bound(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<T>(value));}// Overload of c_lower_bound() for performing a `comp` comparison other than// the default `operator<`.template <typename Sequence, typename T, typename Compare>container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(    Sequence& sequence, T&& value, Compare&& comp) {  return std::lower_bound(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<T>(value), std::forward<Compare>(comp));}// c_upper_bound()//// Container-based version of the <algorithm> `std::upper_bound()` function// to return an iterator pointing to the first element in a sorted container// which is greater than `value`.template <typename Sequence, typename T>container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(    Sequence& sequence, T&& value) {  return std::upper_bound(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<T>(value));}// Overload of c_upper_bound() for performing a `comp` comparison other than// the default `operator<`.template <typename Sequence, typename T, typename Compare>container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(    Sequence& sequence, T&& value, Compare&& comp) {  return std::upper_bound(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<T>(value), std::forward<Compare>(comp));}// c_equal_range()//// Container-based version of the <algorithm> `std::equal_range()` function// to return an iterator pair pointing to the first and last elements in a// sorted container which compare equal to `value`.template <typename Sequence, typename T>container_algorithm_internal::ContainerIterPairType<Sequence, Sequence>c_equal_range(Sequence& sequence, T&& value) {  return std::equal_range(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<T>(value));}// Overload of c_equal_range() for performing a `comp` comparison other than// the default `operator<`.template <typename Sequence, typename T, typename Compare>container_algorithm_internal::ContainerIterPairType<Sequence, Sequence>c_equal_range(Sequence& sequence, T&& value, Compare&& comp) {  return std::equal_range(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<T>(value), std::forward<Compare>(comp));}// c_binary_search()//// Container-based version of the <algorithm> `std::binary_search()` function// to test if any element in the sorted container contains a value equivalent to// 'value'.template <typename Sequence, typename T>bool c_binary_search(Sequence&& sequence, T&& value) {  return std::binary_search(container_algorithm_internal::c_begin(sequence),                            container_algorithm_internal::c_end(sequence),                            std::forward<T>(value));}// Overload of c_binary_search() for performing a `comp` comparison other than// the default `operator<`.template <typename Sequence, typename T, typename Compare>bool c_binary_search(Sequence&& sequence, T&& value, Compare&& comp) {  return std::binary_search(container_algorithm_internal::c_begin(sequence),                            container_algorithm_internal::c_end(sequence),                            std::forward<T>(value),                            std::forward<Compare>(comp));}//------------------------------------------------------------------------------// <algorithm> Merge functions//------------------------------------------------------------------------------// c_merge()//// Container-based version of the <algorithm> `std::merge()` function// to merge two sorted containers into a single sorted iterator.template <typename C1, typename C2, typename OutputIterator>OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result) {  return std::merge(container_algorithm_internal::c_begin(c1),                    container_algorithm_internal::c_end(c1),                    container_algorithm_internal::c_begin(c2),                    container_algorithm_internal::c_end(c2), result);}// Overload of c_merge() for performing a `comp` comparison other than// the default `operator<`.template <typename C1, typename C2, typename OutputIterator, typename Compare>OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result,                       Compare&& comp) {  return std::merge(container_algorithm_internal::c_begin(c1),                    container_algorithm_internal::c_end(c1),                    container_algorithm_internal::c_begin(c2),                    container_algorithm_internal::c_end(c2), result,                    std::forward<Compare>(comp));}// c_inplace_merge()//// Container-based version of the <algorithm> `std::inplace_merge()` function// to merge a supplied iterator `middle` into a container.template <typename C>void c_inplace_merge(C& c,                     container_algorithm_internal::ContainerIter<C> middle) {  std::inplace_merge(container_algorithm_internal::c_begin(c), middle,                     container_algorithm_internal::c_end(c));}// Overload of c_inplace_merge() for performing a merge using a `comp` other// than `operator<`.template <typename C, typename Compare>void c_inplace_merge(C& c,                     container_algorithm_internal::ContainerIter<C> middle,                     Compare&& comp) {  std::inplace_merge(container_algorithm_internal::c_begin(c), middle,                     container_algorithm_internal::c_end(c),                     std::forward<Compare>(comp));}// c_includes()//// Container-based version of the <algorithm> `std::includes()` function// to test whether a sorted container `c1` entirely contains another sorted// container `c2`.template <typename C1, typename C2>bool c_includes(const C1& c1, const C2& c2) {  return std::includes(container_algorithm_internal::c_begin(c1),                       container_algorithm_internal::c_end(c1),                       container_algorithm_internal::c_begin(c2),                       container_algorithm_internal::c_end(c2));}// Overload of c_includes() for performing a merge using a `comp` other than// `operator<`.template <typename C1, typename C2, typename Compare>bool c_includes(const C1& c1, const C2& c2, Compare&& comp) {  return std::includes(container_algorithm_internal::c_begin(c1),                       container_algorithm_internal::c_end(c1),                       container_algorithm_internal::c_begin(c2),                       container_algorithm_internal::c_end(c2),                       std::forward<Compare>(comp));}// c_set_union()//// Container-based version of the <algorithm> `std::set_union()` function// to return an iterator containing the union of two containers; duplicate// values are not copied into the output.template <typename C1, typename C2, typename OutputIterator,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output) {  return std::set_union(container_algorithm_internal::c_begin(c1),                        container_algorithm_internal::c_end(c1),                        container_algorithm_internal::c_begin(c2),                        container_algorithm_internal::c_end(c2), output);}// Overload of c_set_union() for performing a merge using a `comp` other than// `operator<`.template <typename C1, typename C2, typename OutputIterator, typename Compare,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output,                           Compare&& comp) {  return std::set_union(container_algorithm_internal::c_begin(c1),                        container_algorithm_internal::c_end(c1),                        container_algorithm_internal::c_begin(c2),                        container_algorithm_internal::c_end(c2), output,                        std::forward<Compare>(comp));}// c_set_intersection()//// Container-based version of the <algorithm> `std::set_intersection()` function// to return an iterator containing the intersection of two containers.template <typename C1, typename C2, typename OutputIterator,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_intersection(const C1& c1, const C2& c2,                                  OutputIterator output) {  return std::set_intersection(container_algorithm_internal::c_begin(c1),                               container_algorithm_internal::c_end(c1),                               container_algorithm_internal::c_begin(c2),                               container_algorithm_internal::c_end(c2), output);}// Overload of c_set_intersection() for performing a merge using a `comp` other// than `operator<`.template <typename C1, typename C2, typename OutputIterator, typename Compare,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_intersection(const C1& c1, const C2& c2,                                  OutputIterator output, Compare&& comp) {  return std::set_intersection(container_algorithm_internal::c_begin(c1),                               container_algorithm_internal::c_end(c1),                               container_algorithm_internal::c_begin(c2),                               container_algorithm_internal::c_end(c2), output,                               std::forward<Compare>(comp));}// c_set_difference()//// Container-based version of the <algorithm> `std::set_difference()` function// to return an iterator containing elements present in the first container but// not in the second.template <typename C1, typename C2, typename OutputIterator,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_difference(const C1& c1, const C2& c2,                                OutputIterator output) {  return std::set_difference(container_algorithm_internal::c_begin(c1),                             container_algorithm_internal::c_end(c1),                             container_algorithm_internal::c_begin(c2),                             container_algorithm_internal::c_end(c2), output);}// Overload of c_set_difference() for performing a merge using a `comp` other// than `operator<`.template <typename C1, typename C2, typename OutputIterator, typename Compare,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_difference(const C1& c1, const C2& c2,                                OutputIterator output, Compare&& comp) {  return std::set_difference(container_algorithm_internal::c_begin(c1),                             container_algorithm_internal::c_end(c1),                             container_algorithm_internal::c_begin(c2),                             container_algorithm_internal::c_end(c2), output,                             std::forward<Compare>(comp));}// c_set_symmetric_difference()//// Container-based version of the <algorithm> `std::set_symmetric_difference()`// function to return an iterator containing elements present in either one// container or the other, but not both.template <typename C1, typename C2, typename OutputIterator,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,                                          OutputIterator output) {  return std::set_symmetric_difference(      container_algorithm_internal::c_begin(c1),      container_algorithm_internal::c_end(c1),      container_algorithm_internal::c_begin(c2),      container_algorithm_internal::c_end(c2), output);}// Overload of c_set_symmetric_difference() for performing a merge using a// `comp` other than `operator<`.template <typename C1, typename C2, typename OutputIterator, typename Compare,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C1>::value,              void>::type,          typename = typename std::enable_if<              !container_algorithm_internal::IsUnorderedContainer<C2>::value,              void>::type>OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,                                          OutputIterator output,                                          Compare&& comp) {  return std::set_symmetric_difference(      container_algorithm_internal::c_begin(c1),      container_algorithm_internal::c_end(c1),      container_algorithm_internal::c_begin(c2),      container_algorithm_internal::c_end(c2), output,      std::forward<Compare>(comp));}//------------------------------------------------------------------------------// <algorithm> Heap functions//------------------------------------------------------------------------------// c_push_heap()//// Container-based version of the <algorithm> `std::push_heap()` function// to push a value onto a container heap.template <typename RandomAccessContainer>void c_push_heap(RandomAccessContainer& sequence) {  std::push_heap(container_algorithm_internal::c_begin(sequence),                 container_algorithm_internal::c_end(sequence));}// Overload of c_push_heap() for performing a push operation on a heap using a// `comp` other than `operator<`.template <typename RandomAccessContainer, typename Compare>void c_push_heap(RandomAccessContainer& sequence, Compare&& comp) {  std::push_heap(container_algorithm_internal::c_begin(sequence),                 container_algorithm_internal::c_end(sequence),                 std::forward<Compare>(comp));}// c_pop_heap()//// Container-based version of the <algorithm> `std::pop_heap()` function// to pop a value from a heap container.template <typename RandomAccessContainer>void c_pop_heap(RandomAccessContainer& sequence) {  std::pop_heap(container_algorithm_internal::c_begin(sequence),                container_algorithm_internal::c_end(sequence));}// Overload of c_pop_heap() for performing a pop operation on a heap using a// `comp` other than `operator<`.template <typename RandomAccessContainer, typename Compare>void c_pop_heap(RandomAccessContainer& sequence, Compare&& comp) {  std::pop_heap(container_algorithm_internal::c_begin(sequence),                container_algorithm_internal::c_end(sequence),                std::forward<Compare>(comp));}// c_make_heap()//// Container-based version of the <algorithm> `std::make_heap()` function// to make a container a heap.template <typename RandomAccessContainer>void c_make_heap(RandomAccessContainer& sequence) {  std::make_heap(container_algorithm_internal::c_begin(sequence),                 container_algorithm_internal::c_end(sequence));}// Overload of c_make_heap() for performing heap comparisons using a// `comp` other than `operator<`template <typename RandomAccessContainer, typename Compare>void c_make_heap(RandomAccessContainer& sequence, Compare&& comp) {  std::make_heap(container_algorithm_internal::c_begin(sequence),                 container_algorithm_internal::c_end(sequence),                 std::forward<Compare>(comp));}// c_sort_heap()//// Container-based version of the <algorithm> `std::sort_heap()` function// to sort a heap into ascending order (after which it is no longer a heap).template <typename RandomAccessContainer>void c_sort_heap(RandomAccessContainer& sequence) {  std::sort_heap(container_algorithm_internal::c_begin(sequence),                 container_algorithm_internal::c_end(sequence));}// Overload of c_sort_heap() for performing heap comparisons using a// `comp` other than `operator<`template <typename RandomAccessContainer, typename Compare>void c_sort_heap(RandomAccessContainer& sequence, Compare&& comp) {  std::sort_heap(container_algorithm_internal::c_begin(sequence),                 container_algorithm_internal::c_end(sequence),                 std::forward<Compare>(comp));}// c_is_heap()//// Container-based version of the <algorithm> `std::is_heap()` function// to check whether the given container is a heap.template <typename RandomAccessContainer>bool c_is_heap(const RandomAccessContainer& sequence) {  return std::is_heap(container_algorithm_internal::c_begin(sequence),                      container_algorithm_internal::c_end(sequence));}// Overload of c_is_heap() for performing heap comparisons using a// `comp` other than `operator<`template <typename RandomAccessContainer, typename Compare>bool c_is_heap(const RandomAccessContainer& sequence, Compare&& comp) {  return std::is_heap(container_algorithm_internal::c_begin(sequence),                      container_algorithm_internal::c_end(sequence),                      std::forward<Compare>(comp));}// c_is_heap_until()//// Container-based version of the <algorithm> `std::is_heap_until()` function// to find the first element in a given container which is not in heap order.template <typename RandomAccessContainer>container_algorithm_internal::ContainerIter<RandomAccessContainer>c_is_heap_until(RandomAccessContainer& sequence) {  return std::is_heap_until(container_algorithm_internal::c_begin(sequence),                            container_algorithm_internal::c_end(sequence));}// Overload of c_is_heap_until() for performing heap comparisons using a// `comp` other than `operator<`template <typename RandomAccessContainer, typename Compare>container_algorithm_internal::ContainerIter<RandomAccessContainer>c_is_heap_until(RandomAccessContainer& sequence, Compare&& comp) {  return std::is_heap_until(container_algorithm_internal::c_begin(sequence),                            container_algorithm_internal::c_end(sequence),                            std::forward<Compare>(comp));}//------------------------------------------------------------------------------//  <algorithm> Min/max//------------------------------------------------------------------------------// c_min_element()//// Container-based version of the <algorithm> `std::min_element()` function// to return an iterator pointing to the element with the smallest value, using// `operator<` to make the comparisons.template <typename Sequence>container_algorithm_internal::ContainerIter<Sequence> c_min_element(    Sequence& sequence) {  return std::min_element(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence));}// Overload of c_min_element() for performing a `comp` comparison other than// `operator<`.template <typename Sequence, typename Compare>container_algorithm_internal::ContainerIter<Sequence> c_min_element(    Sequence& sequence, Compare&& comp) {  return std::min_element(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<Compare>(comp));}// c_max_element()//// Container-based version of the <algorithm> `std::max_element()` function// to return an iterator pointing to the element with the largest value, using// `operator<` to make the comparisons.template <typename Sequence>container_algorithm_internal::ContainerIter<Sequence> c_max_element(    Sequence& sequence) {  return std::max_element(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence));}// Overload of c_max_element() for performing a `comp` comparison other than// `operator<`.template <typename Sequence, typename Compare>container_algorithm_internal::ContainerIter<Sequence> c_max_element(    Sequence& sequence, Compare&& comp) {  return std::max_element(container_algorithm_internal::c_begin(sequence),                          container_algorithm_internal::c_end(sequence),                          std::forward<Compare>(comp));}// c_minmax_element()//// Container-based version of the <algorithm> `std::minmax_element()` function// to return a pair of iterators pointing to the elements containing the// smallest and largest values, respectively, using `operator<` to make the// comparisons.template <typename C>container_algorithm_internal::ContainerIterPairType<C, C>c_minmax_element(C& c) {  return std::minmax_element(container_algorithm_internal::c_begin(c),                             container_algorithm_internal::c_end(c));}// Overload of c_minmax_element() for performing `comp` comparisons other than// `operator<`.template <typename C, typename Compare>container_algorithm_internal::ContainerIterPairType<C, C>c_minmax_element(C& c, Compare&& comp) {  return std::minmax_element(container_algorithm_internal::c_begin(c),                             container_algorithm_internal::c_end(c),                             std::forward<Compare>(comp));}//------------------------------------------------------------------------------//  <algorithm> Lexicographical Comparisons//------------------------------------------------------------------------------// c_lexicographical_compare()//// Container-based version of the <algorithm> `std::lexicographical_compare()`// function to lexicographically compare (e.g. sort words alphabetically) two// container sequences. The comparison is performed using `operator<`. Note// that capital letters ("A-Z") have ASCII values less than lowercase letters// ("a-z").template <typename Sequence1, typename Sequence2>bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2) {  return std::lexicographical_compare(      container_algorithm_internal::c_begin(sequence1),      container_algorithm_internal::c_end(sequence1),      container_algorithm_internal::c_begin(sequence2),      container_algorithm_internal::c_end(sequence2));}// Overload of c_lexicographical_compare() for performing a lexicographical// comparison using a `comp` operator instead of `operator<`.template <typename Sequence1, typename Sequence2, typename Compare>bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2,                               Compare&& comp) {  return std::lexicographical_compare(      container_algorithm_internal::c_begin(sequence1),      container_algorithm_internal::c_end(sequence1),      container_algorithm_internal::c_begin(sequence2),      container_algorithm_internal::c_end(sequence2),      std::forward<Compare>(comp));}// c_next_permutation()//// Container-based version of the <algorithm> `std::next_permutation()` function// to rearrange a container's elements into the next lexicographically greater// permutation.template <typename C>bool c_next_permutation(C& c) {  return std::next_permutation(container_algorithm_internal::c_begin(c),                               container_algorithm_internal::c_end(c));}// Overload of c_next_permutation() for performing a lexicographical// comparison using a `comp` operator instead of `operator<`.template <typename C, typename Compare>bool c_next_permutation(C& c, Compare&& comp) {  return std::next_permutation(container_algorithm_internal::c_begin(c),                               container_algorithm_internal::c_end(c),                               std::forward<Compare>(comp));}// c_prev_permutation()//// Container-based version of the <algorithm> `std::prev_permutation()` function// to rearrange a container's elements into the next lexicographically lesser// permutation.template <typename C>bool c_prev_permutation(C& c) {  return std::prev_permutation(container_algorithm_internal::c_begin(c),                               container_algorithm_internal::c_end(c));}// Overload of c_prev_permutation() for performing a lexicographical// comparison using a `comp` operator instead of `operator<`.template <typename C, typename Compare>bool c_prev_permutation(C& c, Compare&& comp) {  return std::prev_permutation(container_algorithm_internal::c_begin(c),                               container_algorithm_internal::c_end(c),                               std::forward<Compare>(comp));}//------------------------------------------------------------------------------// <numeric> algorithms//------------------------------------------------------------------------------// c_iota()//// Container-based version of the <algorithm> `std::iota()` function// to compute successive values of `value`, as if incremented with `++value`// after each element is written. and write them to the container.template <typename Sequence, typename T>void c_iota(Sequence& sequence, T&& value) {  std::iota(container_algorithm_internal::c_begin(sequence),            container_algorithm_internal::c_end(sequence),            std::forward<T>(value));}// c_accumulate()//// Container-based version of the <algorithm> `std::accumulate()` function// to accumulate the element values of a container to `init` and return that// accumulation by value.//// Note: Due to a language technicality this function has return type// absl::decay_t<T>. As a user of this function you can casually read// this as "returns T by value" and assume it does the right thing.template <typename Sequence, typename T>decay_t<T> c_accumulate(const Sequence& sequence, T&& init) {  return std::accumulate(container_algorithm_internal::c_begin(sequence),                         container_algorithm_internal::c_end(sequence),                         std::forward<T>(init));}// Overload of c_accumulate() for using a binary operations other than// addition for computing the accumulation.template <typename Sequence, typename T, typename BinaryOp>decay_t<T> c_accumulate(const Sequence& sequence, T&& init,                        BinaryOp&& binary_op) {  return std::accumulate(container_algorithm_internal::c_begin(sequence),                         container_algorithm_internal::c_end(sequence),                         std::forward<T>(init),                         std::forward<BinaryOp>(binary_op));}// c_inner_product()//// Container-based version of the <algorithm> `std::inner_product()` function// to compute the cumulative inner product of container element pairs.//// Note: Due to a language technicality this function has return type// absl::decay_t<T>. As a user of this function you can casually read// this as "returns T by value" and assume it does the right thing.template <typename Sequence1, typename Sequence2, typename T>decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,                           T&& sum) {  return std::inner_product(container_algorithm_internal::c_begin(factors1),                            container_algorithm_internal::c_end(factors1),                            container_algorithm_internal::c_begin(factors2),                            std::forward<T>(sum));}// Overload of c_inner_product() for using binary operations other than// `operator+` (for computing the accumulation) and `operator*` (for computing// the product between the two container's element pair).template <typename Sequence1, typename Sequence2, typename T,          typename BinaryOp1, typename BinaryOp2>decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,                           T&& sum, BinaryOp1&& op1, BinaryOp2&& op2) {  return std::inner_product(container_algorithm_internal::c_begin(factors1),                            container_algorithm_internal::c_end(factors1),                            container_algorithm_internal::c_begin(factors2),                            std::forward<T>(sum), std::forward<BinaryOp1>(op1),                            std::forward<BinaryOp2>(op2));}// c_adjacent_difference()//// Container-based version of the <algorithm> `std::adjacent_difference()`// function to compute the difference between each element and the one preceding// it and write it to an iterator.template <typename InputSequence, typename OutputIt>OutputIt c_adjacent_difference(const InputSequence& input,                               OutputIt output_first) {  return std::adjacent_difference(container_algorithm_internal::c_begin(input),                                  container_algorithm_internal::c_end(input),                                  output_first);}// Overload of c_adjacent_difference() for using a binary operation other than// subtraction to compute the adjacent difference.template <typename InputSequence, typename OutputIt, typename BinaryOp>OutputIt c_adjacent_difference(const InputSequence& input,                               OutputIt output_first, BinaryOp&& op) {  return std::adjacent_difference(container_algorithm_internal::c_begin(input),                                  container_algorithm_internal::c_end(input),                                  output_first, std::forward<BinaryOp>(op));}// c_partial_sum()//// Container-based version of the <algorithm> `std::partial_sum()` function// to compute the partial sum of the elements in a sequence and write them// to an iterator. The partial sum is the sum of all element values so far in// the sequence.template <typename InputSequence, typename OutputIt>OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first) {  return std::partial_sum(container_algorithm_internal::c_begin(input),                          container_algorithm_internal::c_end(input),                          output_first);}// Overload of c_partial_sum() for using a binary operation other than addition// to compute the "partial sum".template <typename InputSequence, typename OutputIt, typename BinaryOp>OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first,                       BinaryOp&& op) {  return std::partial_sum(container_algorithm_internal::c_begin(input),                          container_algorithm_internal::c_end(input),                          output_first, std::forward<BinaryOp>(op));}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_ALGORITHM_CONTAINER_H_
 |