| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// absl::base_internal::Invoke(f, args...) is an implementation of// INVOKE(f, args...) from section [func.require] of the C++ standard.//// [func.require]// Define INVOKE (f, t1, t2, ..., tN) as follows:// 1. (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T//    and t1 is an object of type T or a reference to an object of type T or a//    reference to an object of a type derived from T;// 2. ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a//    class T and t1 is not one of the types described in the previous item;// 3. t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is//    an object of type T or a reference to an object of type T or a reference//    to an object of a type derived from T;// 4. (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1//    is not one of the types described in the previous item;// 5. f(t1, t2, ..., tN) in all other cases.//// The implementation is SFINAE-friendly: substitution failure within Invoke()// isn't an error.#ifndef ABSL_BASE_INTERNAL_INVOKE_H_#define ABSL_BASE_INTERNAL_INVOKE_H_#include <algorithm>#include <type_traits>#include <utility>#include "absl/meta/type_traits.h"// The following code is internal implementation detail.  See the comment at the// top of this file for the API documentation.namespace absl {ABSL_NAMESPACE_BEGINnamespace base_internal {// The five classes below each implement one of the clauses from the definition// of INVOKE. The inner class template Accept<F, Args...> checks whether the// clause is applicable; static function template Invoke(f, args...) does the// invocation.//// By separating the clause selection logic from invocation we make sure that// Invoke() does exactly what the standard says.template <typename Derived>struct StrippedAccept {  template <typename... Args>  struct Accept : Derived::template AcceptImpl<typename std::remove_cv<                      typename std::remove_reference<Args>::type>::type...> {};};// (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T// and t1 is an object of type T or a reference to an object of type T or a// reference to an object of a type derived from T.struct MemFunAndRef : StrippedAccept<MemFunAndRef> {  template <typename... Args>  struct AcceptImpl : std::false_type {};  template <typename MemFunType, typename C, typename Obj, typename... Args>  struct AcceptImpl<MemFunType C::*, Obj, Args...>      : std::integral_constant<bool, std::is_base_of<C, Obj>::value &&                                         absl::is_function<MemFunType>::value> {  };  template <typename MemFun, typename Obj, typename... Args>  static decltype((std::declval<Obj>().*                   std::declval<MemFun>())(std::declval<Args>()...))  Invoke(MemFun&& mem_fun, Obj&& obj, Args&&... args) {    return (std::forward<Obj>(obj).*            std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...);  }};// ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a// class T and t1 is not one of the types described in the previous item.struct MemFunAndPtr : StrippedAccept<MemFunAndPtr> {  template <typename... Args>  struct AcceptImpl : std::false_type {};  template <typename MemFunType, typename C, typename Ptr, typename... Args>  struct AcceptImpl<MemFunType C::*, Ptr, Args...>      : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value &&                                         absl::is_function<MemFunType>::value> {  };  template <typename MemFun, typename Ptr, typename... Args>  static decltype(((*std::declval<Ptr>()).*                   std::declval<MemFun>())(std::declval<Args>()...))  Invoke(MemFun&& mem_fun, Ptr&& ptr, Args&&... args) {    return ((*std::forward<Ptr>(ptr)).*            std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...);  }};// t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is// an object of type T or a reference to an object of type T or a reference// to an object of a type derived from T.struct DataMemAndRef : StrippedAccept<DataMemAndRef> {  template <typename... Args>  struct AcceptImpl : std::false_type {};  template <typename R, typename C, typename Obj>  struct AcceptImpl<R C::*, Obj>      : std::integral_constant<bool, std::is_base_of<C, Obj>::value &&                                         !absl::is_function<R>::value> {};  template <typename DataMem, typename Ref>  static decltype(std::declval<Ref>().*std::declval<DataMem>()) Invoke(      DataMem&& data_mem, Ref&& ref) {    return std::forward<Ref>(ref).*std::forward<DataMem>(data_mem);  }};// (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1// is not one of the types described in the previous item.struct DataMemAndPtr : StrippedAccept<DataMemAndPtr> {  template <typename... Args>  struct AcceptImpl : std::false_type {};  template <typename R, typename C, typename Ptr>  struct AcceptImpl<R C::*, Ptr>      : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value &&                                         !absl::is_function<R>::value> {};  template <typename DataMem, typename Ptr>  static decltype((*std::declval<Ptr>()).*std::declval<DataMem>()) Invoke(      DataMem&& data_mem, Ptr&& ptr) {    return (*std::forward<Ptr>(ptr)).*std::forward<DataMem>(data_mem);  }};// f(t1, t2, ..., tN) in all other cases.struct Callable {  // Callable doesn't have Accept because it's the last clause that gets picked  // when none of the previous clauses are applicable.  template <typename F, typename... Args>  static decltype(std::declval<F>()(std::declval<Args>()...)) Invoke(      F&& f, Args&&... args) {    return std::forward<F>(f)(std::forward<Args>(args)...);  }};// Resolves to the first matching clause.template <typename... Args>struct Invoker {  typedef typename std::conditional<      MemFunAndRef::Accept<Args...>::value, MemFunAndRef,      typename std::conditional<          MemFunAndPtr::Accept<Args...>::value, MemFunAndPtr,          typename std::conditional<              DataMemAndRef::Accept<Args...>::value, DataMemAndRef,              typename std::conditional<DataMemAndPtr::Accept<Args...>::value,                                        DataMemAndPtr, Callable>::type>::type>::          type>::type type;};// The result type of Invoke<F, Args...>.template <typename F, typename... Args>using InvokeT = decltype(Invoker<F, Args...>::type::Invoke(    std::declval<F>(), std::declval<Args>()...));// Invoke(f, args...) is an implementation of INVOKE(f, args...) from section// [func.require] of the C++ standard.template <typename F, typename... Args>InvokeT<F, Args...> Invoke(F&& f, Args&&... args) {  return Invoker<F, Args...>::type::Invoke(std::forward<F>(f),                                           std::forward<Args>(args)...);}}  // namespace base_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_BASE_INTERNAL_INVOKE_H_
 |