| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527 | // Copyright 2018 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: fixed_array.h// -----------------------------------------------------------------------------//// A `FixedArray<T>` represents a non-resizable array of `T` where the length of// the array can be determined at run-time. It is a good replacement for// non-standard and deprecated uses of `alloca()` and variable length arrays// within the GCC extension. (See// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).//// `FixedArray` allocates small arrays inline, keeping performance fast by// avoiding heap operations. It also helps reduce the chances of// accidentally overflowing your stack if large input is passed to// your function.#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_#define ABSL_CONTAINER_FIXED_ARRAY_H_#include <algorithm>#include <cassert>#include <cstddef>#include <initializer_list>#include <iterator>#include <limits>#include <memory>#include <new>#include <type_traits>#include "absl/algorithm/algorithm.h"#include "absl/base/dynamic_annotations.h"#include "absl/base/internal/throw_delegate.h"#include "absl/base/macros.h"#include "absl/base/optimization.h"#include "absl/base/port.h"#include "absl/container/internal/compressed_tuple.h"#include "absl/memory/memory.h"namespace absl {ABSL_NAMESPACE_BEGINconstexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);// -----------------------------------------------------------------------------// FixedArray// -----------------------------------------------------------------------------//// A `FixedArray` provides a run-time fixed-size array, allocating a small array// inline for efficiency.//// Most users should not specify an `inline_elements` argument and let// `FixedArray` automatically determine the number of elements// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the// `FixedArray` implementation will use inline storage for arrays with a// length <= `inline_elements`.//// Note that a `FixedArray` constructed with a `size_type` argument will// default-initialize its values by leaving trivially constructible types// uninitialized (e.g. int, int[4], double), and others default-constructed.// This matches the behavior of c-style arrays and `std::array`, but not// `std::vector`.//// Note that `FixedArray` does not provide a public allocator; if it requires a// heap allocation, it will do so with global `::operator new[]()` and// `::operator delete[]()`, even if T provides class-scope overrides for these// operators.template <typename T, size_t N = kFixedArrayUseDefault,          typename A = std::allocator<T>>class FixedArray {  static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,                "Arrays with unknown bounds cannot be used with FixedArray.");  static constexpr size_t kInlineBytesDefault = 256;  using AllocatorTraits = std::allocator_traits<A>;  // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,  // but this seems to be mostly pedantic.  template <typename Iterator>  using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<      typename std::iterator_traits<Iterator>::iterator_category,      std::forward_iterator_tag>::value>;  static constexpr bool NoexceptCopyable() {    return std::is_nothrow_copy_constructible<StorageElement>::value &&           absl::allocator_is_nothrow<allocator_type>::value;  }  static constexpr bool NoexceptMovable() {    return std::is_nothrow_move_constructible<StorageElement>::value &&           absl::allocator_is_nothrow<allocator_type>::value;  }  static constexpr bool DefaultConstructorIsNonTrivial() {    return !absl::is_trivially_default_constructible<StorageElement>::value;  } public:  using allocator_type = typename AllocatorTraits::allocator_type;  using value_type = typename AllocatorTraits::value_type;  using pointer = typename AllocatorTraits::pointer;  using const_pointer = typename AllocatorTraits::const_pointer;  using reference = value_type&;  using const_reference = const value_type&;  using size_type = typename AllocatorTraits::size_type;  using difference_type = typename AllocatorTraits::difference_type;  using iterator = pointer;  using const_iterator = const_pointer;  using reverse_iterator = std::reverse_iterator<iterator>;  using const_reverse_iterator = std::reverse_iterator<const_iterator>;  static constexpr size_type inline_elements =      (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)                                  : static_cast<size_type>(N));  FixedArray(      const FixedArray& other,      const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())      : FixedArray(other.begin(), other.end(), a) {}  FixedArray(      FixedArray&& other,      const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())      : FixedArray(std::make_move_iterator(other.begin()),                   std::make_move_iterator(other.end()), a) {}  // Creates an array object that can store `n` elements.  // Note that trivially constructible elements will be uninitialized.  explicit FixedArray(size_type n, const allocator_type& a = allocator_type())      : storage_(n, a) {    if (DefaultConstructorIsNonTrivial()) {      memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),                                      storage_.end());    }  }  // Creates an array initialized with `n` copies of `val`.  FixedArray(size_type n, const value_type& val,             const allocator_type& a = allocator_type())      : storage_(n, a) {    memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),                                    storage_.end(), val);  }  // Creates an array initialized with the size and contents of `init_list`.  FixedArray(std::initializer_list<value_type> init_list,             const allocator_type& a = allocator_type())      : FixedArray(init_list.begin(), init_list.end(), a) {}  // Creates an array initialized with the elements from the input  // range. The array's size will always be `std::distance(first, last)`.  // REQUIRES: Iterator must be a forward_iterator or better.  template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>  FixedArray(Iterator first, Iterator last,             const allocator_type& a = allocator_type())      : storage_(std::distance(first, last), a) {    memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);  }  ~FixedArray() noexcept {    for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {      AllocatorTraits::destroy(storage_.alloc(), cur);    }  }  // Assignments are deleted because they break the invariant that the size of a  // `FixedArray` never changes.  void operator=(FixedArray&&) = delete;  void operator=(const FixedArray&) = delete;  // FixedArray::size()  //  // Returns the length of the fixed array.  size_type size() const { return storage_.size(); }  // FixedArray::max_size()  //  // Returns the largest possible value of `std::distance(begin(), end())` for a  // `FixedArray<T>`. This is equivalent to the most possible addressable bytes  // over the number of bytes taken by T.  constexpr size_type max_size() const {    return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);  }  // FixedArray::empty()  //  // Returns whether or not the fixed array is empty.  bool empty() const { return size() == 0; }  // FixedArray::memsize()  //  // Returns the memory size of the fixed array in bytes.  size_t memsize() const { return size() * sizeof(value_type); }  // FixedArray::data()  //  // Returns a const T* pointer to elements of the `FixedArray`. This pointer  // can be used to access (but not modify) the contained elements.  const_pointer data() const { return AsValueType(storage_.begin()); }  // Overload of FixedArray::data() to return a T* pointer to elements of the  // fixed array. This pointer can be used to access and modify the contained  // elements.  pointer data() { return AsValueType(storage_.begin()); }  // FixedArray::operator[]  //  // Returns a reference the ith element of the fixed array.  // REQUIRES: 0 <= i < size()  reference operator[](size_type i) {    ABSL_HARDENING_ASSERT(i < size());    return data()[i];  }  // Overload of FixedArray::operator()[] to return a const reference to the  // ith element of the fixed array.  // REQUIRES: 0 <= i < size()  const_reference operator[](size_type i) const {    ABSL_HARDENING_ASSERT(i < size());    return data()[i];  }  // FixedArray::at  //  // Bounds-checked access.  Returns a reference to the ith element of the  // fiexed array, or throws std::out_of_range  reference at(size_type i) {    if (ABSL_PREDICT_FALSE(i >= size())) {      base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");    }    return data()[i];  }  // Overload of FixedArray::at() to return a const reference to the ith element  // of the fixed array.  const_reference at(size_type i) const {    if (ABSL_PREDICT_FALSE(i >= size())) {      base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");    }    return data()[i];  }  // FixedArray::front()  //  // Returns a reference to the first element of the fixed array.  reference front() {    ABSL_HARDENING_ASSERT(!empty());    return data()[0];  }  // Overload of FixedArray::front() to return a reference to the first element  // of a fixed array of const values.  const_reference front() const {    ABSL_HARDENING_ASSERT(!empty());    return data()[0];  }  // FixedArray::back()  //  // Returns a reference to the last element of the fixed array.  reference back() {    ABSL_HARDENING_ASSERT(!empty());    return data()[size() - 1];  }  // Overload of FixedArray::back() to return a reference to the last element  // of a fixed array of const values.  const_reference back() const {    ABSL_HARDENING_ASSERT(!empty());    return data()[size() - 1];  }  // FixedArray::begin()  //  // Returns an iterator to the beginning of the fixed array.  iterator begin() { return data(); }  // Overload of FixedArray::begin() to return a const iterator to the  // beginning of the fixed array.  const_iterator begin() const { return data(); }  // FixedArray::cbegin()  //  // Returns a const iterator to the beginning of the fixed array.  const_iterator cbegin() const { return begin(); }  // FixedArray::end()  //  // Returns an iterator to the end of the fixed array.  iterator end() { return data() + size(); }  // Overload of FixedArray::end() to return a const iterator to the end of the  // fixed array.  const_iterator end() const { return data() + size(); }  // FixedArray::cend()  //  // Returns a const iterator to the end of the fixed array.  const_iterator cend() const { return end(); }  // FixedArray::rbegin()  //  // Returns a reverse iterator from the end of the fixed array.  reverse_iterator rbegin() { return reverse_iterator(end()); }  // Overload of FixedArray::rbegin() to return a const reverse iterator from  // the end of the fixed array.  const_reverse_iterator rbegin() const {    return const_reverse_iterator(end());  }  // FixedArray::crbegin()  //  // Returns a const reverse iterator from the end of the fixed array.  const_reverse_iterator crbegin() const { return rbegin(); }  // FixedArray::rend()  //  // Returns a reverse iterator from the beginning of the fixed array.  reverse_iterator rend() { return reverse_iterator(begin()); }  // Overload of FixedArray::rend() for returning a const reverse iterator  // from the beginning of the fixed array.  const_reverse_iterator rend() const {    return const_reverse_iterator(begin());  }  // FixedArray::crend()  //  // Returns a reverse iterator from the beginning of the fixed array.  const_reverse_iterator crend() const { return rend(); }  // FixedArray::fill()  //  // Assigns the given `value` to all elements in the fixed array.  void fill(const value_type& val) { std::fill(begin(), end(), val); }  // Relational operators. Equality operators are elementwise using  // `operator==`, while order operators order FixedArrays lexicographically.  friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {    return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());  }  friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {    return !(lhs == rhs);  }  friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {    return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),                                        rhs.end());  }  friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {    return rhs < lhs;  }  friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {    return !(rhs < lhs);  }  friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {    return !(lhs < rhs);  }  template <typename H>  friend H AbslHashValue(H h, const FixedArray& v) {    return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),                      v.size());  } private:  // StorageElement  //  // For FixedArrays with a C-style-array value_type, StorageElement is a POD  // wrapper struct called StorageElementWrapper that holds the value_type  // instance inside. This is needed for construction and destruction of the  // entire array regardless of how many dimensions it has. For all other cases,  // StorageElement is just an alias of value_type.  //  // Maintainer's Note: The simpler solution would be to simply wrap value_type  // in a struct whether it's an array or not. That causes some paranoid  // diagnostics to misfire, believing that 'data()' returns a pointer to a  // single element, rather than the packed array that it really is.  // e.g.:  //  //     FixedArray<char> buf(1);  //     sprintf(buf.data(), "foo");  //  //     error: call to int __builtin___sprintf_chk(etc...)  //     will always overflow destination buffer [-Werror]  //  template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,            size_t InnerN = std::extent<OuterT>::value>  struct StorageElementWrapper {    InnerT array[InnerN];  };  using StorageElement =      absl::conditional_t<std::is_array<value_type>::value,                          StorageElementWrapper<value_type>, value_type>;  static pointer AsValueType(pointer ptr) { return ptr; }  static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {    return std::addressof(ptr->array);  }  static_assert(sizeof(StorageElement) == sizeof(value_type), "");  static_assert(alignof(StorageElement) == alignof(value_type), "");  class NonEmptyInlinedStorage {   public:    StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }    void AnnotateConstruct(size_type n);    void AnnotateDestruct(size_type n);#ifdef ADDRESS_SANITIZER    void* RedzoneBegin() { return &redzone_begin_; }    void* RedzoneEnd() { return &redzone_end_ + 1; }#endif  // ADDRESS_SANITIZER   private:    ADDRESS_SANITIZER_REDZONE(redzone_begin_);    alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];    ADDRESS_SANITIZER_REDZONE(redzone_end_);  };  class EmptyInlinedStorage {   public:    StorageElement* data() { return nullptr; }    void AnnotateConstruct(size_type) {}    void AnnotateDestruct(size_type) {}  };  using InlinedStorage =      absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,                          NonEmptyInlinedStorage>;  // Storage  //  // An instance of Storage manages the inline and out-of-line memory for  // instances of FixedArray. This guarantees that even when construction of  // individual elements fails in the FixedArray constructor body, the  // destructor for Storage will still be called and out-of-line memory will be  // properly deallocated.  //  class Storage : public InlinedStorage {   public:    Storage(size_type n, const allocator_type& a)        : size_alloc_(n, a), data_(InitializeData()) {}    ~Storage() noexcept {      if (UsingInlinedStorage(size())) {        InlinedStorage::AnnotateDestruct(size());      } else {        AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());      }    }    size_type size() const { return size_alloc_.template get<0>(); }    StorageElement* begin() const { return data_; }    StorageElement* end() const { return begin() + size(); }    allocator_type& alloc() { return size_alloc_.template get<1>(); }   private:    static bool UsingInlinedStorage(size_type n) {      return n <= inline_elements;    }    StorageElement* InitializeData() {      if (UsingInlinedStorage(size())) {        InlinedStorage::AnnotateConstruct(size());        return InlinedStorage::data();      } else {        return reinterpret_cast<StorageElement*>(            AllocatorTraits::allocate(alloc(), size()));      }    }    // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s    container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;    StorageElement* data_;  };  Storage storage_;};template <typename T, size_t N, typename A>constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;template <typename T, size_t N, typename A>constexpr typename FixedArray<T, N, A>::size_type    FixedArray<T, N, A>::inline_elements;template <typename T, size_t N, typename A>void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(    typename FixedArray<T, N, A>::size_type n) {#ifdef ADDRESS_SANITIZER  if (!n) return;  ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n);  ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin());#endif                   // ADDRESS_SANITIZER  static_cast<void>(n);  // Mark used when not in asan mode}template <typename T, size_t N, typename A>void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(    typename FixedArray<T, N, A>::size_type n) {#ifdef ADDRESS_SANITIZER  if (!n) return;  ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd());  ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data());#endif                   // ADDRESS_SANITIZER  static_cast<void>(n);  // Mark used when not in asan mode}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
 |