| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// This file tests string processing functions related to numeric values.#include "absl/strings/numbers.h"#include <sys/types.h>#include <cfenv>  // NOLINT(build/c++11)#include <cinttypes>#include <climits>#include <cmath>#include <cstddef>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <limits>#include <numeric>#include <random>#include <set>#include <string>#include <vector>#include "gmock/gmock.h"#include "gtest/gtest.h"#include "absl/base/internal/raw_logging.h"#include "absl/random/distributions.h"#include "absl/random/random.h"#include "absl/strings/internal/numbers_test_common.h"#include "absl/strings/internal/ostringstream.h"#include "absl/strings/internal/pow10_helper.h"#include "absl/strings/str_cat.h"namespace {using absl::numbers_internal::kSixDigitsToBufferSize;using absl::numbers_internal::safe_strto32_base;using absl::numbers_internal::safe_strto64_base;using absl::numbers_internal::safe_strtou32_base;using absl::numbers_internal::safe_strtou64_base;using absl::numbers_internal::SixDigitsToBuffer;using absl::strings_internal::Itoa;using absl::strings_internal::strtouint32_test_cases;using absl::strings_internal::strtouint64_test_cases;using absl::SimpleAtoi;using testing::Eq;using testing::MatchesRegex;// Number of floats to test with.// 5,000,000 is a reasonable default for a test that only takes a few seconds.// 1,000,000,000+ triggers checking for all possible mantissa values for// double-precision tests. 2,000,000,000+ triggers checking for every possible// single-precision float.const int kFloatNumCases = 5000000;// This is a slow, brute-force routine to compute the exact base-10// representation of a double-precision floating-point number.  It// is useful for debugging only.std::string PerfectDtoa(double d) {  if (d == 0) return "0";  if (d < 0) return "-" + PerfectDtoa(-d);  // Basic theory: decompose d into mantissa and exp, where  // d = mantissa * 2^exp, and exp is as close to zero as possible.  int64_t mantissa, exp = 0;  while (d >= 1ULL << 63) ++exp, d *= 0.5;  while ((mantissa = d) != d) --exp, d *= 2.0;  // Then convert mantissa to ASCII, and either double it (if  // exp > 0) or halve it (if exp < 0) repeatedly.  "halve it"  // in this case means multiplying it by five and dividing by 10.  constexpr int maxlen = 1100;  // worst case is actually 1030 or so.  char buf[maxlen + 5];  for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {    buf[pos] = '0' + (num % 10);    num /= 10;  }  char* begin = &buf[0];  char* end = buf + maxlen;  for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {    int carry = 0;    for (char* p = end; --p != begin;) {      int dig = *p - '0';      dig = dig * (exp > 0 ? 2 : 5) + carry;      carry = dig / 10;      dig %= 10;      *p = '0' + dig;    }  }  if (exp < 0) {    // "dividing by 10" above means we have to add the decimal point.    memmove(end + 1 + exp, end + exp, 1 - exp);    end[exp] = '.';    ++end;  }  while (*begin == '0' && begin[1] != '.') ++begin;  return {begin, end};}TEST(ToString, PerfectDtoa) {  EXPECT_THAT(PerfectDtoa(1), Eq("1"));  EXPECT_THAT(PerfectDtoa(0.1),              Eq("0.1000000000000000055511151231257827021181583404541015625"));  EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));  EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));  for (int i = 0; i < 100; ++i) {    for (double multiplier :         {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {      double d = multiplier * i;      std::string s = PerfectDtoa(d);      EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));    }  }}template <typename integer>struct MyInteger {  integer i;  explicit constexpr MyInteger(integer i) : i(i) {}  constexpr operator integer() const { return i; }  constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }  constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }  constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }  constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }  constexpr bool operator<(MyInteger other) const { return i < other.i; }  constexpr bool operator<=(MyInteger other) const { return i <= other.i; }  constexpr bool operator==(MyInteger other) const { return i == other.i; }  constexpr bool operator>=(MyInteger other) const { return i >= other.i; }  constexpr bool operator>(MyInteger other) const { return i > other.i; }  constexpr bool operator!=(MyInteger other) const { return i != other.i; }  integer as_integer() const { return i; }};typedef MyInteger<int64_t> MyInt64;typedef MyInteger<uint64_t> MyUInt64;void CheckInt32(int32_t x) {  char buffer[absl::numbers_internal::kFastToBufferSize];  char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);  std::string expected = std::to_string(x);  EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);  EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;}void CheckInt64(int64_t x) {  char buffer[absl::numbers_internal::kFastToBufferSize + 3];  buffer[0] = '*';  buffer[23] = '*';  buffer[24] = '*';  char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);  std::string expected = std::to_string(x);  EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;  EXPECT_EQ(buffer[0], '*');  EXPECT_EQ(buffer[23], '*');  EXPECT_EQ(buffer[24], '*');  char* my_actual =      absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);  EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;}void CheckUInt32(uint32_t x) {  char buffer[absl::numbers_internal::kFastToBufferSize];  char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);  std::string expected = std::to_string(x);  EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);  EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;}void CheckUInt64(uint64_t x) {  char buffer[absl::numbers_internal::kFastToBufferSize + 1];  char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);  std::string expected = std::to_string(x);  EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;  char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);  EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))      << " Input " << x;  char* my_actual =      absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);  EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;}void CheckHex64(uint64_t v) {  char expected[16 + 1];  std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));  snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));  EXPECT_EQ(expected, actual) << " Input " << v;  actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));  snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));  EXPECT_EQ(expected, actual) << " Input " << v;}TEST(Numbers, TestFastPrints) {  for (int i = -100; i <= 100; i++) {    CheckInt32(i);    CheckInt64(i);  }  for (int i = 0; i <= 100; i++) {    CheckUInt32(i);    CheckUInt64(i);  }  // Test min int to make sure that works  CheckInt32(INT_MIN);  CheckInt32(INT_MAX);  CheckInt64(LONG_MIN);  CheckInt64(uint64_t{1000000000});  CheckInt64(uint64_t{9999999999});  CheckInt64(uint64_t{100000000000000});  CheckInt64(uint64_t{999999999999999});  CheckInt64(uint64_t{1000000000000000000});  CheckInt64(uint64_t{1199999999999999999});  CheckInt64(int64_t{-700000000000000000});  CheckInt64(LONG_MAX);  CheckUInt32(std::numeric_limits<uint32_t>::max());  CheckUInt64(uint64_t{1000000000});  CheckUInt64(uint64_t{9999999999});  CheckUInt64(uint64_t{100000000000000});  CheckUInt64(uint64_t{999999999999999});  CheckUInt64(uint64_t{1000000000000000000});  CheckUInt64(uint64_t{1199999999999999999});  CheckUInt64(std::numeric_limits<uint64_t>::max());  for (int i = 0; i < 10000; i++) {    CheckHex64(i);  }  CheckHex64(uint64_t{0x123456789abcdef0});}template <typename int_type, typename in_val_type>void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {  std::string s;  // (u)int128 can be streamed but not StrCat'd.  absl::strings_internal::OStringStream(&s) << in_value;  int_type x = static_cast<int_type>(~exp_value);  EXPECT_TRUE(SimpleAtoi(s, &x))      << "in_value=" << in_value << " s=" << s << " x=" << x;  EXPECT_EQ(exp_value, x);  x = static_cast<int_type>(~exp_value);  EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));  EXPECT_EQ(exp_value, x);}template <typename int_type, typename in_val_type>void VerifySimpleAtoiBad(in_val_type in_value) {  std::string s;  // (u)int128 can be streamed but not StrCat'd.  absl::strings_internal::OStringStream(&s) << in_value;  int_type x;  EXPECT_FALSE(SimpleAtoi(s, &x));  EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));}TEST(NumbersTest, Atoi) {  // SimpleAtoi(absl::string_view, int32_t)  VerifySimpleAtoiGood<int32_t>(0, 0);  VerifySimpleAtoiGood<int32_t>(42, 42);  VerifySimpleAtoiGood<int32_t>(-42, -42);  VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),                                std::numeric_limits<int32_t>::min());  VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),                                std::numeric_limits<int32_t>::max());  // SimpleAtoi(absl::string_view, uint32_t)  VerifySimpleAtoiGood<uint32_t>(0, 0);  VerifySimpleAtoiGood<uint32_t>(42, 42);  VerifySimpleAtoiBad<uint32_t>(-42);  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());  VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),                                 std::numeric_limits<int32_t>::max());  VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),                                 std::numeric_limits<uint32_t>::max());  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());  VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());  // SimpleAtoi(absl::string_view, int64_t)  VerifySimpleAtoiGood<int64_t>(0, 0);  VerifySimpleAtoiGood<int64_t>(42, 42);  VerifySimpleAtoiGood<int64_t>(-42, -42);  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),                                std::numeric_limits<int32_t>::min());  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),                                std::numeric_limits<int32_t>::max());  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),                                std::numeric_limits<uint32_t>::max());  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),                                std::numeric_limits<int64_t>::min());  VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),                                std::numeric_limits<int64_t>::max());  VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());  // SimpleAtoi(absl::string_view, uint64_t)  VerifySimpleAtoiGood<uint64_t>(0, 0);  VerifySimpleAtoiGood<uint64_t>(42, 42);  VerifySimpleAtoiBad<uint64_t>(-42);  VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),                                 std::numeric_limits<int32_t>::max());  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),                                 std::numeric_limits<uint32_t>::max());  VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),                                 std::numeric_limits<int64_t>::max());  VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),                                 std::numeric_limits<uint64_t>::max());  // SimpleAtoi(absl::string_view, absl::uint128)  VerifySimpleAtoiGood<absl::uint128>(0, 0);  VerifySimpleAtoiGood<absl::uint128>(42, 42);  VerifySimpleAtoiBad<absl::uint128>(-42);  VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),                                      std::numeric_limits<int32_t>::max());  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),                                      std::numeric_limits<uint32_t>::max());  VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),                                      std::numeric_limits<int64_t>::max());  VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),                                      std::numeric_limits<uint64_t>::max());  VerifySimpleAtoiGood<absl::uint128>(      std::numeric_limits<absl::uint128>::max(),      std::numeric_limits<absl::uint128>::max());  // SimpleAtoi(absl::string_view, absl::int128)  VerifySimpleAtoiGood<absl::int128>(0, 0);  VerifySimpleAtoiGood<absl::int128>(42, 42);  VerifySimpleAtoiGood<absl::int128>(-42, -42);  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(),                                      std::numeric_limits<int32_t>::min());  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(),                                      std::numeric_limits<int32_t>::max());  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(),                                      std::numeric_limits<uint32_t>::max());  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(),                                      std::numeric_limits<int64_t>::min());  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(),                                      std::numeric_limits<int64_t>::max());  VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(),                                      std::numeric_limits<uint64_t>::max());  VerifySimpleAtoiGood<absl::int128>(      std::numeric_limits<absl::int128>::min(),      std::numeric_limits<absl::int128>::min());  VerifySimpleAtoiGood<absl::int128>(      std::numeric_limits<absl::int128>::max(),      std::numeric_limits<absl::int128>::max());  VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max());  // Some other types  VerifySimpleAtoiGood<int>(-42, -42);  VerifySimpleAtoiGood<int32_t>(-42, -42);  VerifySimpleAtoiGood<uint32_t>(42, 42);  VerifySimpleAtoiGood<unsigned int>(42, 42);  VerifySimpleAtoiGood<int64_t>(-42, -42);  VerifySimpleAtoiGood<long>(-42, -42);  // NOLINT(runtime/int)  VerifySimpleAtoiGood<uint64_t>(42, 42);  VerifySimpleAtoiGood<size_t>(42, 42);  VerifySimpleAtoiGood<std::string::size_type>(42, 42);}TEST(NumbersTest, Atod) {  double d;  EXPECT_TRUE(absl::SimpleAtod("nan", &d));  EXPECT_TRUE(std::isnan(d));}TEST(NumbersTest, Atoenum) {  enum E01 {    E01_zero = 0,    E01_one = 1,  };  VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);  VerifySimpleAtoiGood<E01>(E01_one, E01_one);  enum E_101 {    E_101_minusone = -1,    E_101_zero = 0,    E_101_one = 1,  };  VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);  VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);  VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);  enum E_bigint {    E_bigint_zero = 0,    E_bigint_one = 1,    E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),  };  VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);  VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);  VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);  enum E_fullint {    E_fullint_zero = 0,    E_fullint_one = 1,    E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),    E_fullint_min32 = INT32_MIN,  };  VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);  VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);  VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);  VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);  enum E_biguint {    E_biguint_zero = 0,    E_biguint_one = 1,    E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),    E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),  };  VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);  VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);  VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);  VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);}TEST(stringtest, safe_strto32_base) {  int32_t value;  EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));  EXPECT_EQ(0x34234324, value);  EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));  EXPECT_EQ(0x34234324, value);  EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));  EXPECT_EQ(0x34234324, value);  EXPECT_TRUE(safe_strto32_base("0", &value, 16));  EXPECT_EQ(0, value);  EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));  EXPECT_EQ(-0x34234324, value);  EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));  EXPECT_EQ(-0x34234324, value);  EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));  EXPECT_EQ(07654321, value);  EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));  EXPECT_EQ(-01234, value);  EXPECT_FALSE(safe_strto32_base("1834", &value, 8));  // Autodetect base.  EXPECT_TRUE(safe_strto32_base("0", &value, 0));  EXPECT_EQ(0, value);  EXPECT_TRUE(safe_strto32_base("077", &value, 0));  EXPECT_EQ(077, value);  // Octal interpretation  // Leading zero indicates octal, but then followed by invalid digit.  EXPECT_FALSE(safe_strto32_base("088", &value, 0));  // Leading 0x indicated hex, but then followed by invalid digit.  EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));  // Base-10 version.  EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));  EXPECT_EQ(34234324, value);  EXPECT_TRUE(safe_strto32_base("0", &value, 10));  EXPECT_EQ(0, value);  EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));  EXPECT_EQ(-34234324, value);  EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));  EXPECT_EQ(34234324, value);  // Invalid ints.  EXPECT_FALSE(safe_strto32_base("", &value, 10));  EXPECT_FALSE(safe_strto32_base("  ", &value, 10));  EXPECT_FALSE(safe_strto32_base("abc", &value, 10));  EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));  EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));  // Out of bounds.  EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));  EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));  // String version.  EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));  EXPECT_EQ(0x1234, value);  // Base-10 string version.  EXPECT_TRUE(safe_strto32_base("1234", &value, 10));  EXPECT_EQ(1234, value);}TEST(stringtest, safe_strto32_range) {  // These tests verify underflow/overflow behaviour.  int32_t value;  EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));  EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);  EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));  EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);  EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));  EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);}TEST(stringtest, safe_strto64_range) {  // These tests verify underflow/overflow behaviour.  int64_t value;  EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));  EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);  EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));  EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);  EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));  EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);}TEST(stringtest, safe_strto32_leading_substring) {  // These tests verify this comment in numbers.h:  // On error, returns false, and sets *value to: [...]  //   conversion of leading substring if available ("123@@@" -> 123)  //   0 if no leading substring available  int32_t value;  EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));  EXPECT_EQ(4069, value);  EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));  EXPECT_EQ(0406, value);  EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));  EXPECT_EQ(4069, value);  EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));  EXPECT_EQ(0x4069ba, value);  EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));  EXPECT_EQ(0, value);  // there was no leading substring}TEST(stringtest, safe_strto64_leading_substring) {  // These tests verify this comment in numbers.h:  // On error, returns false, and sets *value to: [...]  //   conversion of leading substring if available ("123@@@" -> 123)  //   0 if no leading substring available  int64_t value;  EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));  EXPECT_EQ(4069, value);  EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));  EXPECT_EQ(0406, value);  EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));  EXPECT_EQ(4069, value);  EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));  EXPECT_EQ(0x4069ba, value);  EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));  EXPECT_EQ(0, value);  // there was no leading substring}TEST(stringtest, safe_strto64_base) {  int64_t value;  EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));  EXPECT_EQ(int64_t{0x3423432448783446}, value);  EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));  EXPECT_EQ(int64_t{0x3423432448783446}, value);  EXPECT_TRUE(safe_strto64_base("0", &value, 16));  EXPECT_EQ(0, value);  EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));  EXPECT_EQ(int64_t{-0x3423432448783446}, value);  EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));  EXPECT_EQ(int64_t{-0x3423432448783446}, value);  EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));  EXPECT_EQ(int64_t{0123456701234567012}, value);  EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));  EXPECT_EQ(int64_t{-017777777777777}, value);  EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));  // Autodetect base.  EXPECT_TRUE(safe_strto64_base("0", &value, 0));  EXPECT_EQ(0, value);  EXPECT_TRUE(safe_strto64_base("077", &value, 0));  EXPECT_EQ(077, value);  // Octal interpretation  // Leading zero indicates octal, but then followed by invalid digit.  EXPECT_FALSE(safe_strto64_base("088", &value, 0));  // Leading 0x indicated hex, but then followed by invalid digit.  EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));  // Base-10 version.  EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));  EXPECT_EQ(int64_t{34234324487834466}, value);  EXPECT_TRUE(safe_strto64_base("0", &value, 10));  EXPECT_EQ(0, value);  EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));  EXPECT_EQ(int64_t{-34234324487834466}, value);  EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));  EXPECT_EQ(int64_t{34234324487834466}, value);  // Invalid ints.  EXPECT_FALSE(safe_strto64_base("", &value, 10));  EXPECT_FALSE(safe_strto64_base("  ", &value, 10));  EXPECT_FALSE(safe_strto64_base("abc", &value, 10));  EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));  EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));  // Out of bounds.  EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));  EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));  // String version.  EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));  EXPECT_EQ(0x1234, value);  // Base-10 string version.  EXPECT_TRUE(safe_strto64_base("1234", &value, 10));  EXPECT_EQ(1234, value);}const size_t kNumRandomTests = 10000;template <typename IntType>void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,                                                       IntType* value,                                                       int base)) {  using RandomEngine = std::minstd_rand0;  std::random_device rd;  RandomEngine rng(rd());  std::uniform_int_distribution<IntType> random_int(      std::numeric_limits<IntType>::min());  std::uniform_int_distribution<int> random_base(2, 35);  for (size_t i = 0; i < kNumRandomTests; i++) {    IntType value = random_int(rng);    int base = random_base(rng);    std::string str_value;    EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));    IntType parsed_value;    // Test successful parse    EXPECT_TRUE(parse_func(str_value, &parsed_value, base));    EXPECT_EQ(parsed_value, value);    // Test overflow    EXPECT_FALSE(        parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),                   &parsed_value, base));    // Test underflow    if (std::numeric_limits<IntType>::min() < 0) {      EXPECT_FALSE(          parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),                     &parsed_value, base));    } else {      EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));    }  }}TEST(stringtest, safe_strto32_random) {  test_random_integer_parse_base<int32_t>(&safe_strto32_base);}TEST(stringtest, safe_strto64_random) {  test_random_integer_parse_base<int64_t>(&safe_strto64_base);}TEST(stringtest, safe_strtou32_random) {  test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);}TEST(stringtest, safe_strtou64_random) {  test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);}TEST(stringtest, safe_strtou128_random) {  // random number generators don't work for uint128, and  // uint128 can be streamed but not StrCat'd, so this code must be custom  // implemented for uint128, but is generally the same as what's above.  // test_random_integer_parse_base<absl::uint128>(  //     &absl::numbers_internal::safe_strtou128_base);  using RandomEngine = std::minstd_rand0;  using IntType = absl::uint128;  constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base;  std::random_device rd;  RandomEngine rng(rd());  std::uniform_int_distribution<uint64_t> random_uint64(      std::numeric_limits<uint64_t>::min());  std::uniform_int_distribution<int> random_base(2, 35);  for (size_t i = 0; i < kNumRandomTests; i++) {    IntType value = random_uint64(rng);    value = (value << 64) + random_uint64(rng);    int base = random_base(rng);    std::string str_value;    EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));    IntType parsed_value;    // Test successful parse    EXPECT_TRUE(parse_func(str_value, &parsed_value, base));    EXPECT_EQ(parsed_value, value);    // Test overflow    std::string s;    absl::strings_internal::OStringStream(&s)        << std::numeric_limits<IntType>::max() << value;    EXPECT_FALSE(parse_func(s, &parsed_value, base));    // Test underflow    s.clear();    absl::strings_internal::OStringStream(&s) << "-" << value;    EXPECT_FALSE(parse_func(s, &parsed_value, base));  }}TEST(stringtest, safe_strto128_random) {  // random number generators don't work for int128, and  // int128 can be streamed but not StrCat'd, so this code must be custom  // implemented for int128, but is generally the same as what's above.  // test_random_integer_parse_base<absl::int128>(  //     &absl::numbers_internal::safe_strto128_base);  using RandomEngine = std::minstd_rand0;  using IntType = absl::int128;  constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base;  std::random_device rd;  RandomEngine rng(rd());  std::uniform_int_distribution<int64_t> random_int64(      std::numeric_limits<int64_t>::min());  std::uniform_int_distribution<uint64_t> random_uint64(      std::numeric_limits<uint64_t>::min());  std::uniform_int_distribution<int> random_base(2, 35);  for (size_t i = 0; i < kNumRandomTests; ++i) {    int64_t high = random_int64(rng);    uint64_t low = random_uint64(rng);    IntType value = absl::MakeInt128(high, low);    int base = random_base(rng);    std::string str_value;    EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));    IntType parsed_value;    // Test successful parse    EXPECT_TRUE(parse_func(str_value, &parsed_value, base));    EXPECT_EQ(parsed_value, value);    // Test overflow    std::string s;    absl::strings_internal::OStringStream(&s)        << std::numeric_limits<IntType>::max() << value;    EXPECT_FALSE(parse_func(s, &parsed_value, base));    // Test underflow    s.clear();    absl::strings_internal::OStringStream(&s)        << std::numeric_limits<IntType>::min() << value;    EXPECT_FALSE(parse_func(s, &parsed_value, base));  }}TEST(stringtest, safe_strtou32_base) {  for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {    const auto& e = strtouint32_test_cases()[i];    uint32_t value;    EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))        << "str=\"" << e.str << "\" base=" << e.base;    if (e.expect_ok) {      EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str                                   << "\" base=" << e.base;    }  }}TEST(stringtest, safe_strtou32_base_length_delimited) {  for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {    const auto& e = strtouint32_test_cases()[i];    std::string tmp(e.str);    tmp.append("12");  // Adds garbage at the end.    uint32_t value;    EXPECT_EQ(e.expect_ok,              safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),                                 &value, e.base))        << "str=\"" << e.str << "\" base=" << e.base;    if (e.expect_ok) {      EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str                                   << " base=" << e.base;    }  }}TEST(stringtest, safe_strtou64_base) {  for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {    const auto& e = strtouint64_test_cases()[i];    uint64_t value;    EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))        << "str=\"" << e.str << "\" base=" << e.base;    if (e.expect_ok) {      EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;    }  }}TEST(stringtest, safe_strtou64_base_length_delimited) {  for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {    const auto& e = strtouint64_test_cases()[i];    std::string tmp(e.str);    tmp.append("12");  // Adds garbage at the end.    uint64_t value;    EXPECT_EQ(e.expect_ok,              safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),                                 &value, e.base))        << "str=\"" << e.str << "\" base=" << e.base;    if (e.expect_ok) {      EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;    }  }}// feenableexcept() and fedisableexcept() are extensions supported by some libc// implementations.#if defined(__GLIBC__) || defined(__BIONIC__)#define ABSL_HAVE_FEENABLEEXCEPT 1#define ABSL_HAVE_FEDISABLEEXCEPT 1#endifclass SimpleDtoaTest : public testing::Test { protected:  void SetUp() override {    // Store the current floating point env & clear away any pending exceptions.    feholdexcept(&fp_env_);#ifdef ABSL_HAVE_FEENABLEEXCEPT    // Turn on floating point exceptions.    feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);#endif  }  void TearDown() override {    // Restore the floating point environment to the original state.    // In theory fedisableexcept is unnecessary; fesetenv will also do it.    // In practice, our toolchains have subtle bugs.#ifdef ABSL_HAVE_FEDISABLEEXCEPT    fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);#endif    fesetenv(&fp_env_);  }  std::string ToNineDigits(double value) {    char buffer[16];  // more than enough for %.9g    snprintf(buffer, sizeof(buffer), "%.9g", value);    return buffer;  }  fenv_t fp_env_;};// Run the given runnable functor for "cases" test cases, chosen over the// available range of float.  pi and e and 1/e are seeded, and then all// available integer powers of 2 and 10 are multiplied against them.  In// addition to trying all those values, we try the next higher and next lower// float, and then we add additional test cases evenly distributed between them.// Each test case is passed to runnable as both a positive and negative value.template <typename R>void ExhaustiveFloat(uint32_t cases, R&& runnable) {  runnable(0.0f);  runnable(-0.0f);  if (cases >= 2e9) {  // more than 2 billion?  Might as well run them all.    for (float f = 0; f < std::numeric_limits<float>::max(); ) {      f = nextafterf(f, std::numeric_limits<float>::max());      runnable(-f);      runnable(f);    }    return;  }  std::set<float> floats = {3.4028234e38f};  for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {    for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);    for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);    for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)      floats.insert(testf);    for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);  }  float last = *floats.begin();  runnable(last);  runnable(-last);  int iters_per_float = cases / floats.size();  if (iters_per_float == 0) iters_per_float = 1;  for (float f : floats) {    if (f == last) continue;    float testf = std::nextafter(last, std::numeric_limits<float>::max());    runnable(testf);    runnable(-testf);    last = testf;    if (f == last) continue;    double step = (double{f} - last) / iters_per_float;    for (double d = last + step; d < f; d += step) {      testf = d;      if (testf != last) {        runnable(testf);        runnable(-testf);        last = testf;      }    }    testf = std::nextafter(f, 0.0f);    if (testf > last) {      runnable(testf);      runnable(-testf);      last = testf;    }    if (f != last) {      runnable(f);      runnable(-f);      last = f;    }  }}TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {  uint64_t test_count = 0;  std::vector<double> mismatches;  auto checker = [&](double d) {    if (d != d) return;  // rule out NaNs    ++test_count;    char sixdigitsbuf[kSixDigitsToBufferSize] = {0};    SixDigitsToBuffer(d, sixdigitsbuf);    char snprintfbuf[kSixDigitsToBufferSize] = {0};    snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);    if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {      mismatches.push_back(d);      if (mismatches.size() < 10) {        ABSL_RAW_LOG(ERROR, "%s",                     absl::StrCat("Six-digit failure with double.  ", "d=", d,                                  "=", d, " sixdigits=", sixdigitsbuf,                                  " printf(%g)=", snprintfbuf)                         .c_str());      }    }  };  // Some quick sanity checks...  checker(5e-324);  checker(1e-308);  checker(1.0);  checker(1.000005);  checker(1.7976931348623157e308);  checker(0.00390625);#ifndef _MSC_VER  // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it  // to 0.00195312 (round half to even).  checker(0.001953125);#endif  checker(0.005859375);  // Some cases where the rounding is very very close  checker(1.089095e-15);  checker(3.274195e-55);  checker(6.534355e-146);  checker(2.920845e+234);  if (mismatches.empty()) {    test_count = 0;    ExhaustiveFloat(kFloatNumCases, checker);    test_count = 0;    std::vector<int> digit_testcases{        100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100,  // misc        195312, 195313,  // 1.953125 is a case where we round down, just barely.        200000, 500000, 800000,  // misc mid-range cases        585937, 585938,  // 5.859375 is a case where we round up, just barely.        900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};    if (kFloatNumCases >= 1e9) {      // If at least 1 billion test cases were requested, user wants an      // exhaustive test. So let's test all mantissas, too.      constexpr int min_mantissa = 100000, max_mantissa = 999999;      digit_testcases.resize(max_mantissa - min_mantissa + 1);      std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);    }    for (int exponent = -324; exponent <= 308; ++exponent) {      double powten = absl::strings_internal::Pow10(exponent);      if (powten == 0) powten = 5e-324;      if (kFloatNumCases >= 1e9) {        // The exhaustive test takes a very long time, so log progress.        char buf[kSixDigitsToBufferSize];        ABSL_RAW_LOG(            INFO, "%s",            absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten,                         ") (",                         std::string(buf, SixDigitsToBuffer(powten, buf)), ")")                .c_str());      }      for (int digits : digit_testcases) {        if (exponent == 308 && digits >= 179769) break;  // don't overflow!        double digiform = (digits + 0.5) * 0.00001;        double testval = digiform * powten;        double pretestval = nextafter(testval, 0);        double posttestval = nextafter(testval, 1.7976931348623157e308);        checker(testval);        checker(pretestval);        checker(posttestval);      }    }  } else {    EXPECT_EQ(mismatches.size(), 0);    for (size_t i = 0; i < mismatches.size(); ++i) {      if (i > 100) i = mismatches.size() - 1;      double d = mismatches[i];      char sixdigitsbuf[kSixDigitsToBufferSize] = {0};      SixDigitsToBuffer(d, sixdigitsbuf);      char snprintfbuf[kSixDigitsToBufferSize] = {0};      snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);      double before = nextafter(d, 0.0);      double after = nextafter(d, 1.7976931348623157e308);      char b1[32], b2[kSixDigitsToBufferSize];      ABSL_RAW_LOG(          ERROR, "%s",          absl::StrCat(              "Mismatch #", i, "  d=", d, " (", ToNineDigits(d), ")",              " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf,              "'", " Before.=", PerfectDtoa(before), " ",              (SixDigitsToBuffer(before, b2), b2),              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1),              " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2),              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1),              " After.=.", PerfectDtoa(after), " ",              (SixDigitsToBuffer(after, b2), b2),              " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1))              .c_str());    }  }}TEST(StrToInt32, Partial) {  struct Int32TestLine {    std::string input;    bool status;    int32_t value;  };  const int32_t int32_min = std::numeric_limits<int32_t>::min();  const int32_t int32_max = std::numeric_limits<int32_t>::max();  Int32TestLine int32_test_line[] = {      {"", false, 0},      {" ", false, 0},      {"-", false, 0},      {"123@@@", false, 123},      {absl::StrCat(int32_min, int32_max), false, int32_min},      {absl::StrCat(int32_max, int32_max), false, int32_max},  };  for (const Int32TestLine& test_line : int32_test_line) {    int32_t value = -2;    bool status = safe_strto32_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = -2;    status = safe_strto32_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = -2;    status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;  }}TEST(StrToUint32, Partial) {  struct Uint32TestLine {    std::string input;    bool status;    uint32_t value;  };  const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();  Uint32TestLine uint32_test_line[] = {      {"", false, 0},      {" ", false, 0},      {"-", false, 0},      {"123@@@", false, 123},      {absl::StrCat(uint32_max, uint32_max), false, uint32_max},  };  for (const Uint32TestLine& test_line : uint32_test_line) {    uint32_t value = 2;    bool status = safe_strtou32_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = 2;    status = safe_strtou32_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = 2;    status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;  }}TEST(StrToInt64, Partial) {  struct Int64TestLine {    std::string input;    bool status;    int64_t value;  };  const int64_t int64_min = std::numeric_limits<int64_t>::min();  const int64_t int64_max = std::numeric_limits<int64_t>::max();  Int64TestLine int64_test_line[] = {      {"", false, 0},      {" ", false, 0},      {"-", false, 0},      {"123@@@", false, 123},      {absl::StrCat(int64_min, int64_max), false, int64_min},      {absl::StrCat(int64_max, int64_max), false, int64_max},  };  for (const Int64TestLine& test_line : int64_test_line) {    int64_t value = -2;    bool status = safe_strto64_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = -2;    status = safe_strto64_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = -2;    status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;  }}TEST(StrToUint64, Partial) {  struct Uint64TestLine {    std::string input;    bool status;    uint64_t value;  };  const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();  Uint64TestLine uint64_test_line[] = {      {"", false, 0},      {" ", false, 0},      {"-", false, 0},      {"123@@@", false, 123},      {absl::StrCat(uint64_max, uint64_max), false, uint64_max},  };  for (const Uint64TestLine& test_line : uint64_test_line) {    uint64_t value = 2;    bool status = safe_strtou64_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = 2;    status = safe_strtou64_base(test_line.input, &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;    value = 2;    status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);    EXPECT_EQ(test_line.status, status) << test_line.input;    EXPECT_EQ(test_line.value, value) << test_line.input;  }}TEST(StrToInt32Base, PrefixOnly) {  struct Int32TestLine {    std::string input;    bool status;    int32_t value;  };  Int32TestLine int32_test_line[] = {    { "", false, 0 },    { "-", false, 0 },    { "-0", true, 0 },    { "0", true, 0 },    { "0x", false, 0 },    { "-0x", false, 0 },  };  const int base_array[] = { 0, 2, 8, 10, 16 };  for (const Int32TestLine& line : int32_test_line) {    for (const int base : base_array) {      int32_t value = 2;      bool status = safe_strto32_base(line.input.c_str(), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strto32_base(line.input, &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strto32_base(absl::string_view(line.input), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;    }  }}TEST(StrToUint32Base, PrefixOnly) {  struct Uint32TestLine {    std::string input;    bool status;    uint32_t value;  };  Uint32TestLine uint32_test_line[] = {    { "", false, 0 },    { "0", true, 0 },    { "0x", false, 0 },  };  const int base_array[] = { 0, 2, 8, 10, 16 };  for (const Uint32TestLine& line : uint32_test_line) {    for (const int base : base_array) {      uint32_t value = 2;      bool status = safe_strtou32_base(line.input.c_str(), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strtou32_base(line.input, &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strtou32_base(absl::string_view(line.input), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;    }  }}TEST(StrToInt64Base, PrefixOnly) {  struct Int64TestLine {    std::string input;    bool status;    int64_t value;  };  Int64TestLine int64_test_line[] = {    { "", false, 0 },    { "-", false, 0 },    { "-0", true, 0 },    { "0", true, 0 },    { "0x", false, 0 },    { "-0x", false, 0 },  };  const int base_array[] = { 0, 2, 8, 10, 16 };  for (const Int64TestLine& line : int64_test_line) {    for (const int base : base_array) {      int64_t value = 2;      bool status = safe_strto64_base(line.input.c_str(), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strto64_base(line.input, &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strto64_base(absl::string_view(line.input), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;    }  }}TEST(StrToUint64Base, PrefixOnly) {  struct Uint64TestLine {    std::string input;    bool status;    uint64_t value;  };  Uint64TestLine uint64_test_line[] = {    { "", false, 0 },    { "0", true, 0 },    { "0x", false, 0 },  };  const int base_array[] = { 0, 2, 8, 10, 16 };  for (const Uint64TestLine& line : uint64_test_line) {    for (const int base : base_array) {      uint64_t value = 2;      bool status = safe_strtou64_base(line.input.c_str(), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strtou64_base(line.input, &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;      value = 2;      status = safe_strtou64_base(absl::string_view(line.input), &value, base);      EXPECT_EQ(line.status, status) << line.input << " " << base;      EXPECT_EQ(line.value, value) << line.input << " " << base;    }  }}void TestFastHexToBufferZeroPad16(uint64_t v) {  char buf[16];  auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf);  absl::string_view res(buf, 16);  char buf2[17];  snprintf(buf2, sizeof(buf2), "%016" PRIx64, v);  EXPECT_EQ(res, buf2) << v;  size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v);  EXPECT_EQ(digits, expected_digits) << v;}TEST(FastHexToBufferZeroPad16, Smoke) {  TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min());  TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max());  TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min());  TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max());  absl::BitGen rng;  for (int i = 0; i < 100000; ++i) {    TestFastHexToBufferZeroPad16(        absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(),                         std::numeric_limits<uint64_t>::max()));  }}}  // namespace
 |