| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_#define ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_#include <algorithm>#include <cassert>#include <cmath>#include <istream>#include <limits>#include <ostream>#include <type_traits>#include "absl/numeric/bits.h"#include "absl/random/internal/fastmath.h"#include "absl/random/internal/generate_real.h"#include "absl/random/internal/iostream_state_saver.h"#include "absl/random/internal/traits.h"#include "absl/random/uniform_int_distribution.h"namespace absl {ABSL_NAMESPACE_BEGIN// log_uniform_int_distribution://// Returns a random variate R in range [min, max] such that// floor(log(R-min, base)) is uniformly distributed.// We ensure uniformity by discretization using the// boundary sets [0, 1, base, base * base, ... min(base*n, max)]//template <typename IntType = int>class log_uniform_int_distribution { private:  using unsigned_type =      typename random_internal::make_unsigned_bits<IntType>::type; public:  using result_type = IntType;  class param_type {   public:    using distribution_type = log_uniform_int_distribution;    explicit param_type(        result_type min = 0,        result_type max = (std::numeric_limits<result_type>::max)(),        result_type base = 2)        : min_(min),          max_(max),          base_(base),          range_(static_cast<unsigned_type>(max_) -                 static_cast<unsigned_type>(min_)),          log_range_(0) {      assert(max_ >= min_);      assert(base_ > 1);      if (base_ == 2) {        // Determine where the first set bit is on range(), giving a log2(range)        // value which can be used to construct bounds.        log_range_ =            (std::min)(bit_width(range()),                       static_cast<unsigned_type>(                           std::numeric_limits<unsigned_type>::digits));      } else {        // NOTE: Computing the logN(x) introduces error from 2 sources:        // 1. Conversion of int to double loses precision for values >=        // 2^53, which may cause some log() computations to operate on        // different values.        // 2. The error introduced by the division will cause the result        // to differ from the expected value.        //        // Thus a result which should equal K may equal K +/- epsilon,        // which can eliminate some values depending on where the bounds fall.        const double inv_log_base = 1.0 / std::log(base_);        const double log_range = std::log(static_cast<double>(range()) + 0.5);        log_range_ = static_cast<int>(std::ceil(inv_log_base * log_range));      }    }    result_type(min)() const { return min_; }    result_type(max)() const { return max_; }    result_type base() const { return base_; }    friend bool operator==(const param_type& a, const param_type& b) {      return a.min_ == b.min_ && a.max_ == b.max_ && a.base_ == b.base_;    }    friend bool operator!=(const param_type& a, const param_type& b) {      return !(a == b);    }   private:    friend class log_uniform_int_distribution;    int log_range() const { return log_range_; }    unsigned_type range() const { return range_; }    result_type min_;    result_type max_;    result_type base_;    unsigned_type range_;  // max - min    int log_range_;        // ceil(logN(range_))    static_assert(std::is_integral<IntType>::value,                  "Class-template absl::log_uniform_int_distribution<> must be "                  "parameterized using an integral type.");  };  log_uniform_int_distribution() : log_uniform_int_distribution(0) {}  explicit log_uniform_int_distribution(      result_type min,      result_type max = (std::numeric_limits<result_type>::max)(),      result_type base = 2)      : param_(min, max, base) {}  explicit log_uniform_int_distribution(const param_type& p) : param_(p) {}  void reset() {}  // generating functions  template <typename URBG>  result_type operator()(URBG& g) {  // NOLINT(runtime/references)    return (*this)(g, param_);  }  template <typename URBG>  result_type operator()(URBG& g,  // NOLINT(runtime/references)                         const param_type& p) {    return (p.min)() + Generate(g, p);  }  result_type(min)() const { return (param_.min)(); }  result_type(max)() const { return (param_.max)(); }  result_type base() const { return param_.base(); }  param_type param() const { return param_; }  void param(const param_type& p) { param_ = p; }  friend bool operator==(const log_uniform_int_distribution& a,                         const log_uniform_int_distribution& b) {    return a.param_ == b.param_;  }  friend bool operator!=(const log_uniform_int_distribution& a,                         const log_uniform_int_distribution& b) {    return a.param_ != b.param_;  } private:  // Returns a log-uniform variate in the range [0, p.range()]. The caller  // should add min() to shift the result to the correct range.  template <typename URNG>  unsigned_type Generate(URNG& g,  // NOLINT(runtime/references)                         const param_type& p);  param_type param_;};template <typename IntType>template <typename URBG>typename log_uniform_int_distribution<IntType>::unsigned_typelog_uniform_int_distribution<IntType>::Generate(    URBG& g,  // NOLINT(runtime/references)    const param_type& p) {  // sample e over [0, log_range]. Map the results of e to this:  // 0 => 0  // 1 => [1, b-1]  // 2 => [b, (b^2)-1]  // n => [b^(n-1)..(b^n)-1]  const int e = absl::uniform_int_distribution<int>(0, p.log_range())(g);  if (e == 0) {    return 0;  }  const int d = e - 1;  unsigned_type base_e, top_e;  if (p.base() == 2) {    base_e = static_cast<unsigned_type>(1) << d;    top_e = (e >= std::numeric_limits<unsigned_type>::digits)                ? (std::numeric_limits<unsigned_type>::max)()                : (static_cast<unsigned_type>(1) << e) - 1;  } else {    const double r = std::pow(p.base(), d);    const double s = (r * p.base()) - 1.0;    base_e =        (r > static_cast<double>((std::numeric_limits<unsigned_type>::max)()))            ? (std::numeric_limits<unsigned_type>::max)()            : static_cast<unsigned_type>(r);    top_e =        (s > static_cast<double>((std::numeric_limits<unsigned_type>::max)()))            ? (std::numeric_limits<unsigned_type>::max)()            : static_cast<unsigned_type>(s);  }  const unsigned_type lo = (base_e >= p.range()) ? p.range() : base_e;  const unsigned_type hi = (top_e >= p.range()) ? p.range() : top_e;  // choose uniformly over [lo, hi]  return absl::uniform_int_distribution<result_type>(lo, hi)(g);}template <typename CharT, typename Traits, typename IntType>std::basic_ostream<CharT, Traits>& operator<<(    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)    const log_uniform_int_distribution<IntType>& x) {  using stream_type =      typename random_internal::stream_format_type<IntType>::type;  auto saver = random_internal::make_ostream_state_saver(os);  os << static_cast<stream_type>((x.min)()) << os.fill()     << static_cast<stream_type>((x.max)()) << os.fill()     << static_cast<stream_type>(x.base());  return os;}template <typename CharT, typename Traits, typename IntType>std::basic_istream<CharT, Traits>& operator>>(    std::basic_istream<CharT, Traits>& is,       // NOLINT(runtime/references)    log_uniform_int_distribution<IntType>& x) {  // NOLINT(runtime/references)  using param_type = typename log_uniform_int_distribution<IntType>::param_type;  using result_type =      typename log_uniform_int_distribution<IntType>::result_type;  using stream_type =      typename random_internal::stream_format_type<IntType>::type;  stream_type min;  stream_type max;  stream_type base;  auto saver = random_internal::make_istream_state_saver(is);  is >> min >> max >> base;  if (!is.fail()) {    x.param(param_type(static_cast<result_type>(min),                       static_cast<result_type>(max),                       static_cast<result_type>(base)));  }  return is;}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
 |