| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_INTERNAL_FASTMATH_H_#define ABSL_RANDOM_INTERNAL_FASTMATH_H_// This file contains fast math functions (bitwise ops as well as some others)// which are implementation details of various absl random number distributions.#include <cassert>#include <cmath>#include <cstdint>#include "absl/numeric/bits.h"namespace absl {ABSL_NAMESPACE_BEGINnamespace random_internal {// Compute log2(n) using integer operations.// While std::log2 is more accurate than std::log(n) / std::log(2), for// very large numbers--those close to std::numeric_limits<uint64_t>::max() - 2,// for instance--std::log2 rounds up rather than down, which introduces// definite skew in the results.inline int IntLog2Floor(uint64_t n) {  return (n <= 1) ? 0 : (63 - countl_zero(n));}inline int IntLog2Ceil(uint64_t n) {  return (n <= 1) ? 0 : (64 - countl_zero(n - 1));}inline double StirlingLogFactorial(double n) {  assert(n >= 1);  // Using Stirling's approximation.  constexpr double kLog2PI = 1.83787706640934548356;  const double logn = std::log(n);  const double ninv = 1.0 / static_cast<double>(n);  return n * logn - n + 0.5 * (kLog2PI + logn) + (1.0 / 12.0) * ninv -         (1.0 / 360.0) * ninv * ninv * ninv;}}  // namespace random_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_RANDOM_INTERNAL_FASTMATH_H_
 |