| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_POISSON_DISTRIBUTION_H_#define ABSL_RANDOM_POISSON_DISTRIBUTION_H_#include <cassert>#include <cmath>#include <istream>#include <limits>#include <ostream>#include <type_traits>#include "absl/random/internal/fast_uniform_bits.h"#include "absl/random/internal/fastmath.h"#include "absl/random/internal/generate_real.h"#include "absl/random/internal/iostream_state_saver.h"namespace absl {ABSL_NAMESPACE_BEGIN// absl::poisson_distribution:// Generates discrete variates conforming to a Poisson distribution.//   p(n) = (mean^n / n!) exp(-mean)//// Depending on the parameter, the distribution selects one of the following// algorithms:// * The standard algorithm, attributed to Knuth, extended using a split method// for larger values// * The "Ratio of Uniforms as a convenient method for sampling from classical// discrete distributions", Stadlober, 1989.// http://www.sciencedirect.com/science/article/pii/0377042790903495//// NOTE: param_type.mean() is a double, which permits values larger than// poisson_distribution<IntType>::max(), however this should be avoided and// the distribution results are limited to the max() value.//// The goals of this implementation are to provide good performance while still// beig thread-safe: This limits the implementation to not using lgamma provided// by <math.h>.//template <typename IntType = int>class poisson_distribution { public:  using result_type = IntType;  class param_type {   public:    using distribution_type = poisson_distribution;    explicit param_type(double mean = 1.0);    double mean() const { return mean_; }    friend bool operator==(const param_type& a, const param_type& b) {      return a.mean_ == b.mean_;    }    friend bool operator!=(const param_type& a, const param_type& b) {      return !(a == b);    }   private:    friend class poisson_distribution;    double mean_;    double emu_;  // e ^ -mean_    double lmu_;  // ln(mean_)    double s_;    double log_k_;    int split_;    static_assert(std::is_integral<IntType>::value,                  "Class-template absl::poisson_distribution<> must be "                  "parameterized using an integral type.");  };  poisson_distribution() : poisson_distribution(1.0) {}  explicit poisson_distribution(double mean) : param_(mean) {}  explicit poisson_distribution(const param_type& p) : param_(p) {}  void reset() {}  // generating functions  template <typename URBG>  result_type operator()(URBG& g) {  // NOLINT(runtime/references)    return (*this)(g, param_);  }  template <typename URBG>  result_type operator()(URBG& g,  // NOLINT(runtime/references)                         const param_type& p);  param_type param() const { return param_; }  void param(const param_type& p) { param_ = p; }  result_type(min)() const { return 0; }  result_type(max)() const { return (std::numeric_limits<result_type>::max)(); }  double mean() const { return param_.mean(); }  friend bool operator==(const poisson_distribution& a,                         const poisson_distribution& b) {    return a.param_ == b.param_;  }  friend bool operator!=(const poisson_distribution& a,                         const poisson_distribution& b) {    return a.param_ != b.param_;  } private:  param_type param_;  random_internal::FastUniformBits<uint64_t> fast_u64_;};// -----------------------------------------------------------------------------// Implementation details follow// -----------------------------------------------------------------------------template <typename IntType>poisson_distribution<IntType>::param_type::param_type(double mean)    : mean_(mean), split_(0) {  assert(mean >= 0);  assert(mean <= (std::numeric_limits<result_type>::max)());  // As a defensive measure, avoid large values of the mean.  The rejection  // algorithm used does not support very large values well.  It my be worth  // changing algorithms to better deal with these cases.  assert(mean <= 1e10);  if (mean_ < 10) {    // For small lambda, use the knuth method.    split_ = 1;    emu_ = std::exp(-mean_);  } else if (mean_ <= 50) {    // Use split-knuth method.    split_ = 1 + static_cast<int>(mean_ / 10.0);    emu_ = std::exp(-mean_ / static_cast<double>(split_));  } else {    // Use ratio of uniforms method.    constexpr double k2E = 0.7357588823428846;    constexpr double kSA = 0.4494580810294493;    lmu_ = std::log(mean_);    double a = mean_ + 0.5;    s_ = kSA + std::sqrt(k2E * a);    const double mode = std::ceil(mean_) - 1;    log_k_ = lmu_ * mode - absl::random_internal::StirlingLogFactorial(mode);  }}template <typename IntType>template <typename URBG>typename poisson_distribution<IntType>::result_typepoisson_distribution<IntType>::operator()(    URBG& g,  // NOLINT(runtime/references)    const param_type& p) {  using random_internal::GeneratePositiveTag;  using random_internal::GenerateRealFromBits;  using random_internal::GenerateSignedTag;  if (p.split_ != 0) {    // Use Knuth's algorithm with range splitting to avoid floating-point    // errors. Knuth's algorithm is: Ui is a sequence of uniform variates on    // (0,1); return the number of variates required for product(Ui) <    // exp(-lambda).    //    // The expected number of variates required for Knuth's method can be    // computed as follows:    // The expected value of U is 0.5, so solving for 0.5^n < exp(-lambda) gives    // the expected number of uniform variates    // required for a given lambda, which is:    //  lambda = [2, 5,  9, 10, 11, 12, 13, 14, 15, 16, 17]    //  n      = [3, 8, 13, 15, 16, 18, 19, 21, 22, 24, 25]    //    result_type n = 0;    for (int split = p.split_; split > 0; --split) {      double r = 1.0;      do {        r *= GenerateRealFromBits<double, GeneratePositiveTag, true>(            fast_u64_(g));  // U(-1, 0)        ++n;      } while (r > p.emu_);      --n;    }    return n;  }  // Use ratio of uniforms method.  //  // Let u ~ Uniform(0, 1), v ~ Uniform(-1, 1),  //     a = lambda + 1/2,  //     s = 1.5 - sqrt(3/e) + sqrt(2(lambda + 1/2)/e),  //     x = s * v/u + a.  // P(floor(x) = k | u^2 < f(floor(x))/k), where  // f(m) = lambda^m exp(-lambda)/ m!, for 0 <= m, and f(m) = 0 otherwise,  // and k = max(f).  const double a = p.mean_ + 0.5;  for (;;) {    const double u = GenerateRealFromBits<double, GeneratePositiveTag, false>(        fast_u64_(g));  // U(0, 1)    const double v = GenerateRealFromBits<double, GenerateSignedTag, false>(        fast_u64_(g));  // U(-1, 1)    const double x = std::floor(p.s_ * v / u + a);    if (x < 0) continue;  // f(negative) = 0    const double rhs = x * p.lmu_;    // clang-format off    double s = (x <= 1.0) ? 0.0             : (x == 2.0) ? 0.693147180559945             : absl::random_internal::StirlingLogFactorial(x);    // clang-format on    const double lhs = 2.0 * std::log(u) + p.log_k_ + s;    if (lhs < rhs) {      return x > (max)() ? (max)()                         : static_cast<result_type>(x);  // f(x)/k >= u^2    }  }}template <typename CharT, typename Traits, typename IntType>std::basic_ostream<CharT, Traits>& operator<<(    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)    const poisson_distribution<IntType>& x) {  auto saver = random_internal::make_ostream_state_saver(os);  os.precision(random_internal::stream_precision_helper<double>::kPrecision);  os << x.mean();  return os;}template <typename CharT, typename Traits, typename IntType>std::basic_istream<CharT, Traits>& operator>>(    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)    poisson_distribution<IntType>& x) {     // NOLINT(runtime/references)  using param_type = typename poisson_distribution<IntType>::param_type;  auto saver = random_internal::make_istream_state_saver(is);  double mean = random_internal::read_floating_point<double>(is);  if (!is.fail()) {    x.param(param_type(mean));  }  return is;}ABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_RANDOM_POISSON_DISTRIBUTION_H_
 |