| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_#define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_// absl::gaussian_distribution implements the Ziggurat algorithm// for generating random gaussian numbers.//// Implementation based on "The Ziggurat Method for Generating Random Variables"// by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08///#include <cmath>#include <cstdint>#include <istream>#include <limits>#include <type_traits>#include "absl/base/config.h"#include "absl/random/internal/fast_uniform_bits.h"#include "absl/random/internal/generate_real.h"#include "absl/random/internal/iostream_state_saver.h"namespace absl {ABSL_NAMESPACE_BEGINnamespace random_internal {// absl::gaussian_distribution_base implements the underlying ziggurat algorithm// using the ziggurat tables generated by the gaussian_distribution_gentables// binary.//// The specific algorithm has some of the improvements suggested by the// 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples",// Jurgen A Doornik.  (https://www.doornik.com/research/ziggurat.pdf)class ABSL_DLL gaussian_distribution_base { public:  template <typename URBG>  inline double zignor(URBG& g);  // NOLINT(runtime/references) private:  friend class TableGenerator;  template <typename URBG>  inline double zignor_fallback(URBG& g,  // NOLINT(runtime/references)                                bool neg);  // Constants used for the gaussian distribution.  static constexpr double kR = 3.442619855899;  // Start of the tail.  static constexpr double kRInv = 0.29047645161474317;  // ~= (1.0 / kR) .  static constexpr double kV = 9.91256303526217e-3;  static constexpr uint64_t kMask = 0x07f;  // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area  // points on one-half of the normal distribution, where the pdf function,  // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1.  //  // These tables are just over 2kb in size; larger tables might improve the  // distributions, but also lead to more cache pollution.  //  // x = {3.71308, 3.44261, 3.22308, ..., 0}  // f = {0.00101, 0.00266, 0.00554, ..., 1}  struct Tables {    double x[kMask + 2];    double f[kMask + 2];  };  static const Tables zg_;  random_internal::FastUniformBits<uint64_t> fast_u64_;};}  // namespace random_internal// absl::gaussian_distribution:// Generates a number conforming to a Gaussian distribution.template <typename RealType = double>class gaussian_distribution : random_internal::gaussian_distribution_base { public:  using result_type = RealType;  class param_type {   public:    using distribution_type = gaussian_distribution;    explicit param_type(result_type mean = 0, result_type stddev = 1)        : mean_(mean), stddev_(stddev) {}    // Returns the mean distribution parameter.  The mean specifies the location    // of the peak.  The default value is 0.0.    result_type mean() const { return mean_; }    // Returns the deviation distribution parameter.  The default value is 1.0.    result_type stddev() const { return stddev_; }    friend bool operator==(const param_type& a, const param_type& b) {      return a.mean_ == b.mean_ && a.stddev_ == b.stddev_;    }    friend bool operator!=(const param_type& a, const param_type& b) {      return !(a == b);    }   private:    result_type mean_;    result_type stddev_;    static_assert(        std::is_floating_point<RealType>::value,        "Class-template absl::gaussian_distribution<> must be parameterized "        "using a floating-point type.");  };  gaussian_distribution() : gaussian_distribution(0) {}  explicit gaussian_distribution(result_type mean, result_type stddev = 1)      : param_(mean, stddev) {}  explicit gaussian_distribution(const param_type& p) : param_(p) {}  void reset() {}  // Generating functions  template <typename URBG>  result_type operator()(URBG& g) {  // NOLINT(runtime/references)    return (*this)(g, param_);  }  template <typename URBG>  result_type operator()(URBG& g,  // NOLINT(runtime/references)                         const param_type& p);  param_type param() const { return param_; }  void param(const param_type& p) { param_ = p; }  result_type(min)() const {    return -std::numeric_limits<result_type>::infinity();  }  result_type(max)() const {    return std::numeric_limits<result_type>::infinity();  }  result_type mean() const { return param_.mean(); }  result_type stddev() const { return param_.stddev(); }  friend bool operator==(const gaussian_distribution& a,                         const gaussian_distribution& b) {    return a.param_ == b.param_;  }  friend bool operator!=(const gaussian_distribution& a,                         const gaussian_distribution& b) {    return a.param_ != b.param_;  } private:  param_type param_;};// --------------------------------------------------------------------------// Implementation details only below// --------------------------------------------------------------------------template <typename RealType>template <typename URBG>typename gaussian_distribution<RealType>::result_typegaussian_distribution<RealType>::operator()(    URBG& g,  // NOLINT(runtime/references)    const param_type& p) {  return p.mean() + p.stddev() * static_cast<result_type>(zignor(g));}template <typename CharT, typename Traits, typename RealType>std::basic_ostream<CharT, Traits>& operator<<(    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)    const gaussian_distribution<RealType>& x) {  auto saver = random_internal::make_ostream_state_saver(os);  os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);  os << x.mean() << os.fill() << x.stddev();  return os;}template <typename CharT, typename Traits, typename RealType>std::basic_istream<CharT, Traits>& operator>>(    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)    gaussian_distribution<RealType>& x) {   // NOLINT(runtime/references)  using result_type = typename gaussian_distribution<RealType>::result_type;  using param_type = typename gaussian_distribution<RealType>::param_type;  auto saver = random_internal::make_istream_state_saver(is);  auto mean = random_internal::read_floating_point<result_type>(is);  if (is.fail()) return is;  auto stddev = random_internal::read_floating_point<result_type>(is);  if (!is.fail()) {    x.param(param_type(mean, stddev));  }  return is;}namespace random_internal {template <typename URBG>inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {  using random_internal::GeneratePositiveTag;  using random_internal::GenerateRealFromBits;  // This fallback path happens approximately 0.05% of the time.  double x, y;  do {    // kRInv = 1/r, U(0, 1)    x = kRInv *        std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>(            fast_u64_(g)));    y = -std::log(        GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g)));  } while ((y + y) < (x * x));  return neg ? (x - kR) : (kR - x);}template <typename URBG>inline double gaussian_distribution_base::zignor(    URBG& g) {  // NOLINT(runtime/references)  using random_internal::GeneratePositiveTag;  using random_internal::GenerateRealFromBits;  using random_internal::GenerateSignedTag;  while (true) {    // We use a single uint64_t to generate both a double and a strip.    // These bits are unused when the generated double is > 1/2^5.    // This may introduce some bias from the duplicated low bits of small    // values (those smaller than 1/2^5, which all end up on the left tail).    uint64_t bits = fast_u64_(g);    int i = static_cast<int>(bits & kMask);  // pick a random strip    double j = GenerateRealFromBits<double, GenerateSignedTag, false>(        bits);  // U(-1, 1)    const double x = j * zg_.x[i];    // Retangular box. Handles >97% of all cases.    // For any given box, this handles between 75% and 99% of values.    // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5%    if (std::abs(x) < zg_.x[i + 1]) {      return x;    }    // i == 0: Base box. Sample using a ratio of uniforms.    if (i == 0) {      // This path happens about 0.05% of the time.      return zignor_fallback(g, j < 0);    }    // i > 0: Wedge samples using precomputed values.    double v = GenerateRealFromBits<double, GeneratePositiveTag, false>(        fast_u64_(g));  // U(0, 1)    if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <        std::exp(-0.5 * x * x)) {      return x;    }    // The wedge was missed; reject the value and try again.  }}}  // namespace random_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
 |