| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 | // Copyright 2017 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/synchronization/internal/per_thread_sem.h"#include <atomic>#include <condition_variable>  // NOLINT(build/c++11)#include <functional>#include <limits>#include <mutex>               // NOLINT(build/c++11)#include <string>#include <thread>              // NOLINT(build/c++11)#include "gtest/gtest.h"#include "absl/base/config.h"#include "absl/base/internal/cycleclock.h"#include "absl/base/internal/thread_identity.h"#include "absl/strings/str_cat.h"#include "absl/time/clock.h"#include "absl/time/time.h"// In this test we explicitly avoid the use of synchronization// primitives which might use PerThreadSem, most notably absl::Mutex.namespace absl {ABSL_NAMESPACE_BEGINnamespace synchronization_internal {class SimpleSemaphore { public:  SimpleSemaphore() : count_(0) {}  // Decrements (locks) the semaphore. If the semaphore's value is  // greater than zero, then the decrement proceeds, and the function  // returns, immediately. If the semaphore currently has the value  // zero, then the call blocks until it becomes possible to perform  // the decrement.  void Wait() {    std::unique_lock<std::mutex> lock(mu_);    cv_.wait(lock, [this]() { return count_ > 0; });    --count_;    cv_.notify_one();  }  // Increments (unlocks) the semaphore. If the semaphore's value  // consequently becomes greater than zero, then another thread  // blocked Wait() call will be woken up and proceed to lock the  // semaphore.  void Post() {    std::lock_guard<std::mutex> lock(mu_);    ++count_;    cv_.notify_one();  } private:  std::mutex mu_;  std::condition_variable cv_;  int count_;};struct ThreadData {  int num_iterations;                 // Number of replies to send.  SimpleSemaphore identity2_written;  // Posted by thread writing identity2.  base_internal::ThreadIdentity *identity1;  // First Post()-er.  base_internal::ThreadIdentity *identity2;  // First Wait()-er.  KernelTimeout timeout;};// Need friendship with PerThreadSem.class PerThreadSemTest : public testing::Test { public:  static void TimingThread(ThreadData* t) {    t->identity2 = GetOrCreateCurrentThreadIdentity();    t->identity2_written.Post();    while (t->num_iterations--) {      Wait(t->timeout);      Post(t->identity1);    }  }  void TestTiming(const char *msg, bool timeout) {    static const int kNumIterations = 100;    ThreadData t;    t.num_iterations = kNumIterations;    t.timeout = timeout ?        KernelTimeout(absl::Now() + absl::Seconds(10000))  // far in the future        : KernelTimeout::Never();    t.identity1 = GetOrCreateCurrentThreadIdentity();    // We can't use the Thread class here because it uses the Mutex    // class which will invoke PerThreadSem, so we use std::thread instead.    std::thread partner_thread(std::bind(TimingThread, &t));    // Wait for our partner thread to register their identity.    t.identity2_written.Wait();    int64_t min_cycles = std::numeric_limits<int64_t>::max();    int64_t total_cycles = 0;    for (int i = 0; i < kNumIterations; ++i) {      absl::SleepFor(absl::Milliseconds(20));      int64_t cycles = base_internal::CycleClock::Now();      Post(t.identity2);      Wait(t.timeout);      cycles = base_internal::CycleClock::Now() - cycles;      min_cycles = std::min(min_cycles, cycles);      total_cycles += cycles;    }    std::string out = StrCat(        msg, "min cycle count=", min_cycles, " avg cycle count=",        absl::SixDigits(static_cast<double>(total_cycles) / kNumIterations));    printf("%s\n", out.c_str());    partner_thread.join();  } protected:  static void Post(base_internal::ThreadIdentity *id) {    PerThreadSem::Post(id);  }  static bool Wait(KernelTimeout t) {    return PerThreadSem::Wait(t);  }  // convenience overload  static bool Wait(absl::Time t) {    return Wait(KernelTimeout(t));  }  static void Tick(base_internal::ThreadIdentity *identity) {    PerThreadSem::Tick(identity);  }};namespace {TEST_F(PerThreadSemTest, WithoutTimeout) {  PerThreadSemTest::TestTiming("Without timeout: ", false);}TEST_F(PerThreadSemTest, WithTimeout) {  PerThreadSemTest::TestTiming("With timeout:    ", true);}TEST_F(PerThreadSemTest, Timeouts) {  const absl::Duration delay = absl::Milliseconds(50);  const absl::Time start = absl::Now();  EXPECT_FALSE(Wait(start + delay));  const absl::Duration elapsed = absl::Now() - start;  // Allow for a slight early return, to account for quality of implementation  // issues on various platforms.  const absl::Duration slop = absl::Microseconds(200);  EXPECT_LE(delay - slop, elapsed)      << "Wait returned " << delay - elapsed      << " early (with " << slop << " slop), start time was " << start;  absl::Time negative_timeout = absl::UnixEpoch() - absl::Milliseconds(100);  EXPECT_FALSE(Wait(negative_timeout));  EXPECT_LE(negative_timeout, absl::Now() + slop);  // trivially true :)  Post(GetOrCreateCurrentThreadIdentity());  // The wait here has an expired timeout, but we have a wake to consume,  // so this should succeed  EXPECT_TRUE(Wait(negative_timeout));}}  // namespace}  // namespace synchronization_internalABSL_NAMESPACE_END}  // namespace absl
 |